Теплый водяной пол теплообменник


Пластинчатый теплообменник для тёплого водяного пола

В этой статье мы с вами разберемся для чего нужен пластинчатый теплообменник в теплом водяном полу дома, посмотрим на принцип и преимущества его использования.

Обустраивая свое жилище, каждый старается сделать его максимально комфортным, уютным и безопасным. Водяные теплые полы появились относительно недавно, однако их популярность возрастает с каждым годом, и многие отдают предпочтение именно такой системе обогрева.

Водяной теплый пол более надежный, безопасный и экономичный, в отличие от электрического.

При его обустройстве от системы центрального отопления, часто применяется коллекторная система подачи теплоносителя. Однако наряду с насосами, коллекторными системами устанавливается теплообменник.

Система тёплого пола с теплообменником

Принцип действия

Теплообменник — это устройство, благодаря которому осуществляется обмен теплом в напольной и центральной системе отопления. Принцип его работы базируется на том, что вода, проходящая по системе центрального водоснабжения, передает тепло жидкости, циркулирующей в теплых полах.

Теплообменник для тёплого водяного пола

Таким образом, если у вас в доме отключат центральное отопление или оно вовсе отсутствует, то на температуре пола это никак не отразится. Но стоит учесть, что вам понадобится не только теплообменник, но и расширительный бак, узел с грязевиком и группа безопасности.

Самые элементарные образцы теплообменников выглядят как конструкция «труба в трубе».

Водяной теплый пол в квартире функционирует с носителем, температура которого до 45°. Благодаря работе при такой невысокой температуре создается более благоприятный климат и воздух насыщается положительными ионами.

Устанавливают теплообменник чаще всего по вертикали. Осуществляя монтаж устройства, нужно уделять внимание диаметрам подключения.

Самым распространённым является пластинчатый теплообменник. Он состоит из пластинчатых элементов с оригинальной штампованной конфигурацией. Эти элементы находятся параллельно по отношению друг к другу и внутри устройства создаются два контура: один отдает тепловую энергию, другой — приобретает. Внешние элементы конструкции обособлены от тех частей, которые проводят тепло. Это значит, что энергия практически не теряется и вы можете не беспокоиться, что кто-то из домашних получит ожог, если нечаянно коснется теплообменника. Пластинчатые теплообменники производятся из качественных сталей, которые отличаются химической инертностью и устойчивостью к коррозии.

Принцип работы пластинчатого теплообменника

Преимущества использования теплообменника

Используя теплообменник при обогреве квартиры с помощью тёплого водяного пола, можно получить множество преимуществ:

    1. Водяной пол намного выгоднее электрического, а с теплообменником вы не будете зависеть от центрального отопления и сможете обогревать полы в любое время.

Мощность теплообменника для тёплого пола рекомендуется брать с запасом.

  1. Такая система отопления не требует больших затрат электроэнергии и является более экономной.
  2. Функционирование теплообменника устроено таким образом, что его температура снижаться не будет и давление в системе не понизится.
  3. В трубах будет отсутствовать ржавая вода.
Про выбор труб для тёплого пола можете прочитать тут.

Всё это позволяет сделать вывод, что устанавливать теплообменник необходимо при монтаже тёплого водяного пола.

ТЕПЛООБМЕННИКИ

Теплообменник - это устройство, используемое для передачи тепла между двумя или более жидкостями. Жидкости могут быть одно- или двухфазными и, в зависимости от типа теплообменника, могут быть разделены или находиться в прямом контакте. Устройства, использующие источники энергии, такие как стержни ядерного топлива или огневые нагреватели, обычно не считаются теплообменниками, хотя многие принципы, заложенные в их конструкции, одинаковы.

Чтобы обсудить теплообменники, необходимо дать некоторую форму категоризации.Обычно используются два подхода. Первый рассматривает конфигурацию потока в теплообменнике, а второй основан на классификации типа оборудования, прежде всего, по конструкции. Оба рассмотрены здесь.

Классификация теплообменников по конфигурации потока

Существует четыре основных конфигурации потока:

На рисунке 1 показан идеализированный противоточный теплообменник, в котором две жидкости текут параллельно друг другу, но в противоположных направлениях.Этот тип организации потока позволяет максимально изменить температуру обеих жидкостей и, следовательно, является наиболее эффективным (где эффективность - это количество фактически переданного тепла по сравнению с теоретическим максимальным количеством тепла, которое может быть передано).

Рисунок 1. Противоток.

В теплообменниках с прямоточным потоком потоки текут параллельно друг другу и в том же направлении, как показано на рисунке 2. Это менее эффективно, чем противоток, но обеспечивает более однородную температуру стенок.

Рисунок 2. Попутный поток.

По эффективности теплообменники с перекрестным потоком занимают промежуточное положение между противоточными и параллельными теплообменниками. В этих установках потоки текут под прямым углом друг к другу, как показано на рисунке 3.

Рисунок 3. Поперечный поток.

В промышленных теплообменниках часто встречаются гибриды вышеуказанных проточных типов. Примерами являются комбинированные теплообменники с поперечным / противотоком и многопроходные теплообменники.(См., Например, рисунок 4.)

Рисунок 4. Перекрестный / противоточный поток.

Классификация теплообменников по конструкции

В этом разделе теплообменники классифицируются в основном по их конструкции, Garland (1990) (см. Рисунок 5). Первый уровень классификации - разделение типов теплообменников на рекуперативные и регенеративные. Рекуперативный теплообменник имеет отдельные пути потока для каждой жидкости, и жидкости протекают одновременно через теплообменник, обмениваясь теплом через стенку, разделяющую пути потока.Рекуперативный теплообменник имеет единственный путь потока, по которому попеременно проходят горячие и холодные жидкости.

Рисунок 5. Классификация теплообменников.

Регенеративные теплообменники

В регенеративном теплообменнике путь потока обычно состоит из матрицы, которая нагревается при прохождении через нее горячей жидкости (это известно как «горячий обдув»). Это тепло затем передается холодной жидкости, когда она протекает через матрицу («холодный удар»).Регенеративные теплообменники иногда называют емкостными теплообменниками . Хороший обзор регенераторов дает Walker (1982).

Регенераторы в основном используются для рекуперации тепла газа / газа на электростанциях и в других энергоемких отраслях. Два основных типа регенераторов - статические и динамические. Оба типа регенераторов являются кратковременными в эксплуатации, и, если при их проектировании не уделить должного внимания, обычно происходит перекрестное загрязнение горячего и холодного потоков.Однако использование регенераторов, вероятно, расширится в будущем, поскольку предпринимаются попытки повысить энергоэффективность и утилизировать больше низкопотенциального тепла. Однако, поскольку регенеративные теплообменники, как правило, используются для специальных применений, рекуперативные теплообменники более распространены.

Рекуперативные теплообменники

Существует много типов рекуперативных теплообменников, которые можно в широком смысле сгруппировать в непрямой контакт, прямой контакт и специальные. В теплообменниках непрямого контакта теплоносители разделяются с помощью трубок, пластин и т. Д.. Теплообменники с прямым контактом не разделяют жидкости, обмениваясь теплом, и фактически полагаются на то, что жидкости находятся в тесном контакте.

В этом разделе кратко описаны некоторые из наиболее распространенных типов теплообменников, которые организованы в соответствии с классификацией, приведенной на рисунке 5.

В этом типе пары разделены стенкой, обычно металлической. Примерами являются трубчатые теплообменники, см. Рисунок 6, и пластинчатые теплообменники, см. Рисунок 7.

Трубчатые теплообменники очень популярны из-за гибкости, которую разработчик должен учитывать в широком диапазоне давлений и температур.Трубчатые теплообменники можно разделить на несколько категорий, из которых кожухотрубный теплообменник является наиболее распространенным.

Кожухотрубный теплообменник состоит из ряда трубок, установленных внутри цилиндрической оболочки. На рисунке 8 показан типичный блок, который можно найти на нефтехимическом заводе. Две жидкости могут обмениваться теплом, одна жидкость течет по внешней стороне трубок, а вторая жидкость течет по трубкам. Жидкости могут быть одно- или двухфазными и могут течь в параллельном или перекрестном / противотоке.Кожухотрубный теплообменник состоит из четырех основных частей:

  • Передняя часть - это место, где жидкость входит в трубную часть теплообменника.

  • Задний конец - это то место, где жидкость со стороны трубы выходит из теплообменника или где она возвращается в передний коллектор в теплообменниках с несколькими проходами со стороны трубы.

  • Пучок труб - состоит из трубок, трубных решеток, перегородок, анкерных стержней и т. Д. Для удержания пучка вместе.

  • Кожух - содержит пучок труб.

Популярность кожухотрубных теплообменников привела к разработке стандарта для их обозначения и использования. Это стандарт ассоциации производителей трубчатых теплообменников (TEMA). Обычно кожухотрубные теплообменники изготавливаются из металла, но для специальных применений (например, с использованием сильных кислот в фармацевтических препаратах) могут использоваться другие материалы, такие как графит, пластик и стекло. Также нормально, чтобы трубки были прямыми, но в некоторых криогенных приложениях используются спиральные или змеевики Хэмпсона .Простая форма кожухотрубного теплообменника - это двухтрубный теплообменник. Этот теплообменник состоит из одной или нескольких трубок, содержащихся внутри трубы большего размера. В наиболее сложной форме многотрубный двухтрубный теплообменник мало отличается от кожухотрубного теплообменника. Однако двухтрубные теплообменники, как правило, имеют модульную конструкцию, поэтому несколько блоков могут быть соединены болтами для достижения требуемой нагрузки. Книга Э.А.Д. Сондерс [Saunders (1988)] дает хороший обзор трубчатых теплообменников.

К другим типам трубчатых теплообменников относятся:

  • Печи - технологическая жидкость проходит через печь в прямых или спирально намотанных трубах, а нагрев осуществляется горелками или электрическими нагревателями.

  • Пластинчатые трубы - в основном используются в системах рекуперации тепла и кондиционирования воздуха. Трубки обычно монтируются в какой-либо форме воздуховода, а пластины действуют как опоры и обеспечивают дополнительную площадь поверхности в виде ребер.

  • С электрическим нагревом - в этом случае жидкость обычно течет по внешней стороне электрически нагреваемых трубок (см. Джоулев нагрев).

  • Теплообменники с воздушным охлаждением состоят из пучка труб, вентиляторной системы и несущей конструкции. Трубки могут иметь ребра различного типа, чтобы обеспечить дополнительную площадь поверхности со стороны воздуха. Воздух либо всасывается через трубы вентилятором, установленным над пучком (принудительная тяга), либо продувается через трубы вентилятором, установленным под пучком (принудительная тяга). Они, как правило, используются в местах, где есть проблемы с получением достаточного количества охлаждающей воды.

  • Тепловые трубы, сосуды с мешалкой и теплообменники из графитовых блоков можно рассматривать как трубчатые или помещать в Рекуперативные «Особые предложения». Тепловая труба состоит из трубы, материала фитиля и рабочей жидкости. Рабочая жидкость поглощает тепло, испаряется и переходит на другой конец тепловой трубы, где конденсируется и выделяет тепло. Затем жидкость под действием капилляров возвращается к горячему концу тепловой трубы для повторного испарения. Сосуды с мешалкой в ​​основном используются для нагрева вязких жидкостей.Они состоят из емкости с трубками внутри и мешалки, такой как пропеллер или ленточный винтовой импеллер. Трубки несут горячую жидкость, а мешалка вводится для обеспечения равномерного нагрева холодной жидкости. Теплообменники с угольным блоком обычно используются, когда необходимо нагреть или охладить агрессивные жидкости. Они состоят из твердых блоков углерода, в которых просверлены отверстия для прохождения жидкости. Затем блоки скрепляются болтами вместе с коллекторами, образуя теплообменник.

Пластинчатые теплообменники отделяют жидкости, обменивающиеся теплом, с помощью пластин.У них обычно есть улучшенные поверхности, такие как ребра или тиснение, и они скреплены болтами, припаяны или сварены. Пластинчатые теплообменники в основном используются в криогенной и пищевой промышленности. Однако из-за высокого отношения площади поверхности к объему, малого количества жидкостей и способности обрабатывать более двух паров они также начинают использоваться в химической промышленности.

Пластинчатые и рамные теплообменники состоят из двух прямоугольных концевых элементов, которые удерживают вместе несколько тисненых прямоугольных пластин с отверстиями на углах для прохождения жидкостей.Каждая из пластин разделена прокладкой, которая герметизирует пластины и обеспечивает поток жидкости между пластинами, см. Рис. 9. Этот тип теплообменника широко используется в пищевой промышленности, поскольку его можно легко разобрать для очистки. Если утечка в окружающую среду вызывает беспокойство, можно сварить две пластины вместе, чтобы гарантировать, что жидкость, протекающая между сваренными пластинами, не сможет протечь. Однако, поскольку некоторые прокладки все еще присутствуют, утечка все еще возможна. Паяные пластинчатые теплообменники предотвращают возможность утечки за счет пайки всех пластин вместе, а затем приваривания входных и выходных отверстий.

Рисунок 6. Классификация трубчатых теплообменников.

Рисунок 7. Классификация пластинчатого теплообменника.

Рисунок 8. Кожухотрубный теплообменник.

Рисунок 9. Пластинчато-рамный теплообменник.

Пластинчато-ребристые теплообменники состоят из ребер или прокладок, зажатых между параллельными пластинами. Ребра могут быть расположены так, чтобы допускать любую комбинацию поперечного или параллельного потока между соседними пластинами. Также возможно пропустить до 12 потоков жидкости через один теплообменник за счет тщательного расположения коллекторов.Обычно они изготавливаются из алюминия или нержавеющей стали и спаяны вместе. Их основное применение - сжижение газа из-за их способности работать с близкими температурами.

Пластинчатые теплообменники в некоторых отношениях аналогичны кожухотрубным. Прямоугольные трубы со скругленными углами уложены друг на друга, образуя пучок, который помещается внутри оболочки. Одна жидкость проходит через трубки, тогда как жидкость течет параллельно через промежутки между трубками.Они, как правило, используются в целлюлозно-бумажной промышленности, где требуются большие проточные каналы.

Спиральные пластинчатые теплообменники образуются путем наматывания двух плоских параллельных пластин вместе в змеевик. Затем концы уплотняются прокладками или свариваются. Они в основном используются с вязкими, сильно загрязняющими жидкостями или жидкостями, содержащими частицы или волокна.

В данной категории теплообменников не используется поверхность теплопередачи, из-за чего она часто дешевле, чем косвенные теплообменники.Однако, чтобы использовать теплообменник прямого контакта с двумя жидкостями, они должны быть несмешиваемыми, или, если будет использоваться одна жидкость, она должна претерпеть фазовый переход. (См. Прямая контактная теплопередача.)

Наиболее легко узнаваемая форма теплообменника с прямым контактом - градирня с естественной тягой, которая используется на многих электростанциях. Эти агрегаты состоят из большой приблизительно цилиндрической оболочки (обычно более 100 м в высоту) и насадки внизу для увеличения площади поверхности. Охлаждаемая вода распыляется на набивку сверху, в то время как воздух проходит через дно набивки и поднимается вверх через башню за счет естественной плавучести.Основная проблема с этим и другими типами градирен с прямым контактом - это постоянная необходимость восполнения подачи охлаждающей воды за счет испарения.

Конденсаторы прямого контакта иногда используются вместо трубчатых конденсаторов из-за их низких капитальных затрат и затрат на обслуживание. Есть много вариантов конденсатора прямого контакта. В простейшей форме охлаждающая жидкость разбрызгивается сверху емкости над паром, поступающим сбоку емкости. Затем конденсат и охлаждающая жидкость собираются внизу.Большая площадь поверхности распылителя гарантирует, что они являются достаточно эффективными теплообменниками.

Закачка пара используется для нагрева жидкости в резервуарах или в трубопроводах. Пар способствует передаче тепла за счет турбулентности, создаваемой впрыском, и передает тепло путем конденсации. Обычно конденсат не собирается.

Прямой нагрев в основном используется в сушилках, где влажное твердое вещество сушится путем пропускания его через поток горячего воздуха. Другой вид прямого нагрева - это горение под водой.Он был разработан в основном для концентрирования и кристаллизации коррозионных растворов. Жидкость испаряется пламенем, и выхлопные газы направляются вниз в жидкость, которая находится в резервуаре.

Воздухоохладитель с мокрой поверхностью в некоторых отношениях похож на теплообменник с воздушным охлаждением. Однако в этом типе устройства вода распыляется по трубкам, а вентилятор всасывает воздух и воду через пучок труб. Вся система закрыта, и теплый влажный воздух обычно выводится в атмосферу.

Скребковые теплообменники состоят из емкости с рубашкой, через которую проходит жидкость, и вращающегося скребка, который непрерывно удаляет отложения с внутренних стенок емкости. Эти агрегаты используются в пищевой и фармацевтической промышленности в тех случаях, когда отложения образуются на нагретых стенках сосуда с рубашкой.

Статические регенераторы или регенераторы с неподвижным слоем не имеют движущихся частей, кроме клапанов. В этом случае горячий газ проходит через матрицу в течение фиксированного периода времени, в конце которого происходит реверсирование, горячий газ отключается, а холодный газ проходит через матрицу.Основная проблема с этим типом агрегатов заключается в том, что и горячий, и холодный поток прерывистый. Чтобы преодолеть это и обеспечить непрерывную работу, требуются по крайней мере два статических регенератора или можно использовать роторный регенератор.

В роторном регенераторе насадка цилиндрической формы вращается вокруг оси цилиндра между парой газовых уплотнений. Горячий и холодный газ протекает одновременно по каналам с обеих сторон газовых уплотнений и через вращающуюся насадку. (См. Рекуперативные теплообменники.)

Термический анализ любого теплообменника включает решение основного уравнения теплопередачи.

(1)

Это уравнение рассчитывает количество тепла, передаваемого через область dA, где T h и T c - местные температуры горячей и холодной жидкости, α - местный коэффициент теплопередачи, а dA - местная дополнительная площадь, на которой α основано. Для плоской стены

(2)

где δ w - толщина стенки, а λ w - ее теплопроводность.

Для однофазного обтекания стенки α для каждого из потоков является функцией Re и Pr. Когда происходит конденсация или кипение, α также может зависеть от разницы температур. Как только коэффициент теплопередачи для каждого потока и стены известен, общий коэффициент теплопередачи U определяется как

(3)

где сопротивление стенки r w равно 1 / α w . Общая скорость теплопередачи между горячей и холодной текучими средами тогда определяется выражением

(4)

Это уравнение предназначено для постоянных температур и коэффициентов теплопередачи.В большинстве теплообменников это не так, поэтому используется другая форма уравнения

(5)

где - общая тепловая нагрузка, U - средний общий коэффициент теплопередачи, а ΔT M - средняя разница температур. Расчет ΔT M и отказ от предположения о постоянном коэффициенте теплопередачи описаны в разделе «Средняя разница температур».

Расчет U и ΔT M требует информации о типе теплообменника, геометрии (например,g., размер проходов в пластине или диаметр трубы), ориентация потока, чистый противоток или поперечный поток и т. д. Затем можно рассчитать общую нагрузку с использованием предполагаемого значения AT и сравнить с требуемой нагрузкой. Затем можно внести изменения в предполагаемую геометрию и U, ΔT M и пересчитать, чтобы в конечном итоге перейти к решению, которое равно требуемой нагрузке. Однако при выполнении термического анализа на каждой итерации также следует проверять, не превышен ли допустимый перепад давления.Компьютерные программы, такие как TASC от HTFS (Heat Transfer and Fluid Flow Service), автоматически выполняют эти вычисления и оптимизируют конструкцию.

Механические аспекты

Все типы теплообменников должны подвергаться механической конструкции в той или иной форме. Любой теплообменник, работающий при давлении выше атмосферного, должен быть спроектирован в соответствии с местным кодом конструкции сосуда под давлением , например ASME VIII (Американское общество инженеров-механиков) или BS 5500 (Британский стандарт).Эти нормы определяют требования к резервуару высокого давления, но не касаются каких-либо специфических особенностей конкретного типа теплообменника. В некоторых случаях для определенных типов теплообменников существуют специальные стандарты. Два из них перечислены ниже, но в целом отдельные производители определяют свои собственные стандарты.

ССЫЛКИ

Гарланд, У. Дж. (1990) Частное сообщение.

Уокер, Г. (1982) Industrial Heat Exchangers-A Basic Guide , Hemisphere Publishing Corporation.

Rohsenow, W. M. и Hartnett, J. P. (1973) Справочник по теплопередаче , Нью-Йорк: McGraw-Hill Book Company. DOI: 10.1016 / 0017-9310 (75)

-9

Сондерс, Э. А. Д. (1988) Теплообменники - выбор, проектирование и изготовление, Longman Scientific and Technical. DOI: 10.1016 / 0378-3820 (89)

-5

Ассоциация производителей трубчатых теплообменников, (1988 г.) (ТЕМА), седьмое издание. Кожухотрубные теплообменники .

Американский институт нефти (API) 661: Теплообменники с воздушным охлаждением для нефтяной промышленности .

.

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследовательская работа
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

.

Отопление дома с помощью водонагревателя без резервуара

._da [_da] {display: none;}. layout-2col-page> ._ da [_da = "CenterWell"] {display: block; float: left; margin: 0 -100% 0 -30000px; padding: 0 0 0 0,0%; ширина: 0,0%;}. Layout-2col-page> ._ da> ._ dj-px [_da = "CenterWell"] {height: auto; margin: 0.0px -30876.0px 0 30000.0px; width: 876.0 px;}. layout-2col-page> ._ da> ._ dj-px ._dw-em [_da = "CenterWell"] {padding-left: 0;}. layout-2col-page> ._ da> ._ dj-px ._dw-pt [_da = "CenterWell"] {padding-left: 0;}.layout-2col-page> ._ da> ._ dj-px ._dw-px [_da = "CenterWell"] {padding-left: 876.0px;}. layout-2col-page> ._ da [_da = "RightRail"] { display: block; float: left; margin: 0 -100% 0 -30000px; padding: 0 0 0 0,0%; width: 0,0%;}. layout-2col-page> ._ da> ._ dj-px [_da = " RightRail "] {height: auto; margin: 0.0px -31200.0px 0 30900.0px; width: 300.0px;}. Layout-2col-page> ._ da> ._ dj-px ._dw-em [_da =" RightRail "] {padding-left: 0;}. layout-2col-page> ._ da> ._ dj-px ._dw-pt [_da = "RightRail"] {padding-left: 0;}. layout-2col-page> ._ da > ._ dj-px ._dw-px [_da = "RightRail"] {padding-left: 300.0px;}. Layout-2col-page> ._ da [_da = "FooterAds"] {clear: left; display: block; float: left; margin: 0 -100% 0 -30000px; padding: 0 0 0 0,0%; width: 0.0%;}. layout-2col-page> ._ da> ._ dj-px [_da = "FooterAds"] {height: auto; margin: 0.0px -31200.0px 0 30000.0px; width: 1200.0px;}. layout-2col-page> ._ da> ._ dj-px ._dw-em [_da = "FooterAds"] {padding-left: 0;}. layout-2col-page> ._ da> ._ dj-px ._dw-pt [_da = "FooterAds"] {padding-left: 0;}. layout-2col-page> ._ da> ._ dj-px ._dw-px [_da = "FooterAds"] {padding-left: 1200.0px;} @ только экран мультимедиа и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page {min-width: 940.0px;}} @ экран только мультимедиа и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page> ._ da [_da] {display : none;}} @ экран только мультимедиа и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page> ._ da [_da = "CenterWell"] {display: block; float: left ; margin: 0 -100% 0 -30000px; padding: 0 0 0 0,0%; width: 0,0%;}} @ media only screen и (max-width: 1520px) и (min-width: 560px) {.layout- 2col-page> ._ da> ._ dj-px [_da = "CenterWell"] {height: auto; margin: 0.0px -30620.0px 0 30000.0px; width: 620.0px;}} @ media only screen и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page> ._ da> ._ dj-px ._dw-em [_da = "CenterWell"] {padding-left: 0;}} @ экран только мультимедиа и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page> ._ da> ._ dj-px ._dw-pt [_da = "CenterWell"] {padding-left: 0;}} @ экран только мультимедиа и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page> ._ da> ._ dj-px. _dw-px [_da = "CenterWell"] {padding-left: 620.0px;}} @ экран только для мультимедиа и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page>._da [_da = "RightRail"] {display: block; float: left; margin: 0 -100% 0 -30000px; padding: 0 0 0 0,0%; width: 0,0%;}} @ экран только мультимедиа и (max- width: 1520px) и (min-width: 560px) {.layout-2col-page> ._ da> ._ dj-px [_da = "RightRail"] {height: auto; margin: 0.0px -30940.0px 0 30640.0px; width: 300.0px;}} @ media only screen и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page> ._ da> ._ dj-px ._dw-em [_da = " RightRail "] {padding-left: 0;}} @ экран только мультимедиа и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page>._da> ._ dj-px ._dw-pt [_da = "RightRail"] {padding-left: 0;}} @ экран только мультимедиа и (max-width: 1520px) и (min-width: 560px) {.layout- 2col-page> ._ da> ._ dj-px ._dw-px [_da = "RightRail"] {padding-left: 300.0px;}} @ экран только для медиа и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page> ._ da [_da = "FooterAds"] {clear: left; display: block; float: left; margin: 0 -100% 0 -30000px; padding: 0 0 0 0.0%; width: 0.0%;}} @ media only screen и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page> ._ da> ._ dj-px [_da = "FooterAds"] { высота: авто; маржа: 0.0px -30940.0px 0 30000.0px; width: 940.0px;}} @ media only screen и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page> ._ da> ._ dj-px ._dw-em [_da = "FooterAds"] {padding-left: 0;}} @ экран только мультимедиа и (max-width: 1520px) и (min-width: 560px) {.layout-2col-page> ._ da > ._ dj-px ._dw-pt [_da = "FooterAds"] {padding-left: 0;}} @ экран только мультимедиа и (max-width: 1520px) и (min-width: 560px) {.layout-2col -page> ._ da> ._ dj-px ._dw-px [_da = "FooterAds"] {padding-left: 940.0px;}} @ экран только мультимедиа и (max-width: 559px) {.layout-2col-page {min-width: 0.0px;}} @ media only screen и (max-width: 559px) {.layout-2col-page> ._ da [_da] {display: none;}} @ media only экран и (max-width: 559px) {.layout-2col-page> ._ da [_da = "CenterWell"] {display: block; float: left; margin: 0 -100% 0 -30000px; padding: 0 0 0 0,0%; width: 100.0%;}} @ экран только мультимедиа и (max-width: 559px) {.layout-2col-page> ._ da> ._ dj-px [_da = "CenterWell"] {height: auto; margin : 0.0px -30000.0px 0 30000.0px; width: auto;}} @ media only screen и (max-width: 559px) {.layout-2col-page>._da> ._ dj-px ._dw-em [_da = "CenterWell"] {padding-left: 0;}} @ экран только мультимедиа и (max-width: 559px) {.layout-2col-page> ._ da>. _dj-px ._dw-pt [_da = "CenterWell"] {padding-left: 0;}} @ экран только для медиа и (max-width: 559px) {.layout-2col-page> ._ da> ._ dj-px ._dw-px [_da = "CenterWell"] {padding-left: 0;}} @ экран только мультимедиа и (max-width: 559px) {.layout-2col-page> ._ da [_da = "RightRail"] { ]]>

.

Конструкция теплообменника и типы теплообменников

Конструкция теплообменника и типы теплообменников Статья Учебники по альтернативной энергии 03.10.2014 08.02.2020 Учебники по альтернативной энергии

Поделитесь / добавьте в закладки с:

Конструкция теплообменника

Мы используем теплообменник каждый день в наших домах, на рабочих местах и ​​в транспортных средствах, даже не подозревая об этом. Теплообменник - это устройство для теплопередачи, которое обменивает (отсюда и название) тепловую энергию от одного источника и передает ее другому при разных температурах.В большинстве конструкций теплообменников жидкости или газы, используемые для передачи тепла, разделены и не смешиваются.

Теплообменники существуют уже много лет и обычно используются в обычных системах теплового отопления, а также в системах кондиционирования воздуха, холодильном оборудовании, транспортных средствах, а теперь и в системах рекуперации тепла от возобновляемых источников энергии, таких как солнечные тепловые панели, геотермальные и другие типы оборудования. применения солнечной тепловой энергии.

Типовая конструкция теплообменника

Но наиболее распространенные типы теплообменников, которые мы видим и используем ежедневно, включают домашние радиаторы центрального отопления, автомобильные радиаторы, конденсаторы и испарители HVAC, задние ящики для печей, маслоохладители и т. Д.Использование теплообменников в нашей повседневной жизни, больших или малых, безгранично. Если вы когда-нибудь использовали грелку в постели ночью, чтобы согреть ноги, то вы слишком хорошо знаете, какие преимущества могут принести теплообменники.

Итак, , как работает теплообменник . Теплообменник представляет собой пассивную гофрированную массу металла, которая передает тепло от одной рабочей жидкости к другой. Первичный теплоноситель поглощает тепло от источника тепла, будь то горелка, бойлер или другое нагревательное устройство, а затем циркулирует через теплообменник, где тепло отводится от жидкости (воды или газа) и передается вторичному жидкость, опять же вода или газ, который циркулирует и рассеивает тепло (радиатор) в дом или атмосферу.

Солнечные водонагревательные системы используют технологию теплообменника для передачи тепла от солнца в циркулирующую воду, а многие косвенные системы используют теплообменник, который отделен от солнечных коллекторов. Эти типы теплообменников широко известны как теплообменники вода-вода, поскольку и первичная, и вторичная жидкости представляют собой воду, возможно, смешанную с антикоррозийным средством.

Теплообменники с воздушным охлаждением - это еще один тип конструкции теплообменников, применяемый в автомобилях для охлаждения двигателя.Первичная жидкость - это вода, а вторичная жидкость - воздух, продуваемый вентиляторами через ребра теплообменника. Обычно в теплообменнике нет движущихся частей, только внешние вентиляторы для циркуляции воздуха.

На выбор предлагается множество конструкций теплообменников: трубчатые, двухтрубные, плоские, спиральные и змеевики. Выбор одного типа конструкции теплообменника зависит от многих факторов. Большинство теплообменников классифицируются в зависимости от их конструкции, способа передачи тепла и компактности поверхности.Это величина площади поверхности, от которой тепло может рассеиваться или передаваться, по сравнению с физическим размером.

Некоторые из наиболее распространенных конструкций теплообменников и типов включают:

Типы конструкции теплообменников

  • 1. Конструкция кожухотрубного теплообменника
  • 2. Конструкция теплообменника с двойной трубкой или шпилькой
  • 3. Плоско-пластинчатый теплообменник
  • 4. Радиаторы и солнечные теплообменники
  • 5. Спиральные теплообменники
  • 6.Воздухоохладители, чиллеры и конденсаторы
  • 7. Мокрые градирни

Конструкция трубчатого теплообменника

Трубчатый теплообменник - самая простая конструкция. Первичная жидкость циркулирует по прямым или концентрическим трубам в форме U-образной трубы. Эти первичные трубки заключены во внешнюю герметичную трубку, по которой циркулирует вторичная жидкость. Обычно они применяются в небольших системах передачи тепла вода-вода. Преимуществом этого типа конструкции является гибкость, поскольку трубчатые теплообменники могут быть добавлены или удалены по мере необходимости.Также любое количество теплообменников может быть соединено вместе последовательно или параллельно.

Конструкция трубчатого теплообменника - двойной поток

Несмотря на то, что конструкция однопроходного теплообменника этого типа очень проста и проста, эффективность этого типа может быть увеличена за счет направленного потока вторичной жидкости в направлении, противоположном первичному потоку, для улучшения поглощения тепла и эффективности. Если и первичная, и вторичная жидкости текут в одном и том же направлении, это называется «параллельным потоком».Если первичная и вторичная жидкости текут в противоположном направлении, это называется «противотоком». Также внутренняя тепловая трубка может быть либо одной голой трубкой, снабженной ребрами для увеличения площади поверхности, либо многотрубной конструкцией, как показано.

Конструкция плоского пластинчатого теплообменника

Плоские пластинчатые теплообменники - еще один распространенный тип конструкции, обеспечивающий повышенную эффективность для своего размера по сравнению с трубчатыми конструкциями. Плоские пластинчатые теплообменники обеспечивают относительно большую поверхность теплообмена в небольшом пространстве, а также могут работать при более высоких давлениях жидкости.

Плоские пластинчатые теплообменники состоят из множества тонких металлических пластин, соединенных или «уложенных» вместе, с небольшим пространством между каждой пластиной, чтобы позволить теплоносителю циркулировать, отводя тепло от пластин по мере его прохождения. Эти отдельные пластины обычно соединяются с помощью резиновых прокладок и уплотнений для предотвращения утечки и направления теплоносителей через альтернативные проточные каналы. Другие типы плоских пластинчатых теплообменников включают паяные или сварные теплообменники.

Поскольку плоские пластинчатые теплообменники имеют большую площадь поверхности, это обеспечивает максимальный контакт между двумя теплоносителями, что обеспечивает эффективную и действенную теплопередачу. Так же, как и в трубчатой ​​конструкции, поток жидкости двух теплоносителей может быть либо параллельным, либо противотоком, при этом каждая пластина имеет четыре отверстия, служащих впускным и выпускным отверстиями.

Пластинчато-ребристые и трубчато-ребристые теплообменники - еще один более распространенный тип теплообменников, относящихся к категории «компактных теплообменников».Они состоят из плоских, гофрированных или решетчатых металлических пластин, которые приклеиваются, припаиваются или привариваются к серии плоских, круглых или прямоугольных труб. Этот тип конструкции теплообменника используется в течение многих лет с отдельными ребрами или пластинчатыми ребрами в самых разных областях применения.

Теплообменники

Compact получили свое название от того факта, что их конструкция обеспечивает очень большую тепловую поверхность при небольшом физическом размере. Компактность теплообменника обычно выражается в нескольких м. 2 / м 3 физических размеров с плотностью поверхности более 1000 м. 2 / м 3 в настоящее время распространены.

Компактные теплообменники обычно используются в качестве автомобильных радиаторов охлаждения воды и масла, в системах кондиционирования воздуха, в системах рекуперации технологического и отработанного тепла, преобразования тепловой энергии океана, в геотермальных и солнечных тепловых системах. Фактически везде, где есть потребность в небольшом, компактном, легком, компактном и экономичном теплообменнике.

Мы видели, что Heat Exchanger - это механическое устройство, которое используется для передачи тепловой энергии между двумя или более циркулирующими жидкостями при разных температурах.Эти жидкости обычно разделены некоторой формой поверхности теплопередачи, будь то трубчатая, плоская или оребренная конструкция. Теплообменники обычно классифицируются по их конструкции, компактности и способу передачи тепла от первичной жидкости к вторичной.

Теплообменники обычно используются на транспорте, в системах отопления, вентиляции и кондиционирования воздуха, в технологических процессах, в энергетике, рекуперации тепла, возобновляемых источниках энергии и в других подобных областях. Типы теплообменников, обычно используемых в нашей повседневной жизни, включают автомобильные радиаторы и охладители, кондиционеры, геотермальные испарители и конденсаторы.

Технология и конструкция теплообменников прошли долгий путь на протяжении многих лет, и наблюдается устойчивый прогресс в уменьшении размеров и компактности радиаторов, чиллеров, испарителей и конденсаторов для повышения эффективности преобразования.

Компактные теплообменники в настоящее время становятся все более стандартными и имеют большую удельную поверхность теплообмена на единицу объема более 800 м 2 / м 3 . В компактных теплообменниках две жидкости обычно движутся перпендикулярно друг другу, при этом первичная жидкость является жидкостью, а вторичная жидкость - нагнетаемым воздухом.Конечно, тепловые характеристики любого теплообменника со временем будут ухудшаться в результате накопления грязи и отложений на теплопередающих поверхностях, поскольку слой отложений представляет собой дополнительное сопротивление передаче тепла.

.

Смотрите также