Теплый пол не включается терморегулятор


Не греет электрический теплый пол

Не редко случается, что исправно проработав один, два сезона электрический теплый пол внезапно перестает греть. Если он у вас выполнял роль дополнительного отопления, то с этим еще можно как-то повременить.

Вызвать специалиста, дождаться ремонтных работ. А вот когда, это единственный и основной источник отопления в доме, можно ли найти причину поломки своими руками и устранить ее самостоятельно?

В большинстве случаев можно, но многое зависит от места повреждения и причины. Вот основные три:
  • неисправность терморегулятора
  • выход из строя температурного датчика
  • повреждение кабеля

Ошибки при монтаже

Если теплый пол у вас все же греет, но плохо, слишком часто выключается, так и не набрав нужной температуры, проблема изначально может заключаться в неправильном расположении температурного датчика.

Получается, что еще на стадии монтажа, вы его разместили слишком близко к греющему кабелю. Либо он сместился в момент укладки напольного покрытия.

Когда датчик согласно инструкции заложен в гофре, можно попытаться решить проблему, втолкнув или вытащив его из гофротрубки на 5см.

Если такие проблемы с недостаточным прогревом появились совсем недавно, вспомните, в каком месте заложен этот индикатор. Вполне возможно, что именно на него кто-то передвинул и поставил какую-нибудь мебель или положил коврик.

Из-за этого, датчик стал прогревать пол в этом месте быстрее, и соответственно отключаться раньше обычного.

Еще слабый прогрев может быть вызван пониженным напряжением в сети у вас в квартире. Вольтметром сделайте замеры.

Какое напряжение по ГОСТу должно быть у вас в доме читайте в статье ”Что такое реле напряжения и всегда ли оно нужно в квартире”.

Выход из строя терморегулятора

Когда электрический теплый пол вообще не включается, поиск неисправности нужно начинать с терморегулятора. Для начала вытащите его из посадочного места, чтобы были видны все клеммы.

Если у вас электронный тип, при его демонтаже никогда не надавливайте пальцами на экран, иначе он может треснуть.

Первым делом мультиметром проверьте, а приходит ли на терморегулятор вообще 220В? Может быть дело и не в полу, а все проблемы в питающем кабеле.

Используйте именно мультиметр или вольтметр, а не простой индикатор, который показывает просто наличие фазы. Фаза то может и приходить, а вот ноля не будет – отсюда и не работоспособность всей системы.

На большинстве термостатов все клеммы производители подписывают и маркируют:

  • L и N – место куда подключается питание (фаза и ноль соответственно)

В определенных моделях рекомендуется строго соблюдать “полярность” и не путать ноль с фазой. Почему?

Для этого достаточно разобрать регулятор и тогда вы увидите, что ноль напрямую через дорожку подается на греющий кабель. Фаза же разрывается через реле. Например, именно так сделано в модели RTC 70.26.

То есть, если вы перепутаете ”полярность”, то фаза всегда будет дежурить у вас на теплом полу. Даже, когда встроенный выключатель отключен! Будьте внимательны.

  • L1 и N1 – отходящая нагрузка, греющий кабель или мат
  • Sensor – термодатчик

Конечно может быть и другое обозначение клемм:

Если напряжение на клеммах питания есть и оно в норме, то обязательно перепроверьте надежность контактов в остальных зажимах.

Бывает такое, что со временем контакт ослабляется и тонкий проводок просто выпадает и перестает контачить. В итоге программное обеспечение теплого пола выдает это как ошибку – ”Авария. Обрыв датчика теплого пола.”

Вроде бы, коснулись терморегулятора или включили-выключили общий автомат и все заработало. Начинаете искать проблему где-то глубоко, а она на поверхности – плохой контакт в клеммной колодке.

Повреждение и проверка датчика температуры

Когда проблем с контактами нет, нужно проверить работоспособность самого регулятора и датчика. Как это сделать, не ломая пол?

Для этого на те клеммы, куда подключается кабель теплого пола, подсоедините обычную лампочку с патроном. Подаете напряжение и начинаете выкручивать регулятор изменяя температуру.

При исправности прибора и достижении определенной (комнатной или ниже) температуры, произойдет щелчок и лампочка загорится.

Затем берете обычный фен и начинаете прогревать то место пола, где установлен температурный датчик.

Если он действительно исправный, то через пару минут (зависит от толщины стяжки), датчик должен сработать и лампочка отключится. Это означает, что причина скорее всего в повреждении самого греющего кабеля и контролирующая аппаратура здесь не причем.

Но иногда повреждаются и сами приборы. Если при включении теплых полов индикатор начинает моргать и тухнет, после чего кабель естественно не греет, то возможно у вас в схеме ”пересох” конденсатор.

Такое часто происходит при длительной эксплуатации теплого пола от 5 лет и более. Когда моргает зеленый светодиод, то это может свидетельствовать об обрыве датчика.

Встречается и обратная ситуация. Пол прогревается, а терморегулятор не выключается. То есть, постоянно горит красный индикатор. Как проверить, что не исправно?

Отсоединяете от клемм провода терморезистора и мультиметром замеряете его сопротивление, сравнивая с паспортными данными. Причем характеристики у разных производителей могут существенно отличаться. Начиная от 6кОм и заканчивая 100кОм и более.

Если получилось очень высокое или бесконечное сопротивление – то датчик не исправен. Терморегулятор думает, что пол холодный и соответственно греет его до максимума. То же самое происходит и при обрыве проводов идущих до датчика.

Еще многих пугают, что если нарастить длину проводов до термостата, то тем самым резко изменится общее сопротивление, и прибор будет работать не корректно.

Подумайте сами – сопротивление таких терморезисторов составляет несколько кОм. А вы, нарастив пару лишних метров, добавите всего несколько Ом. Погрешность при настройке температуры практически не поменяется.

Защита от короткого замыкания

Никаких предохранителей в терморегуляторах обычно не ставится, не ищите их внутри. Фактически функцию предохранителя в системах электрических теплых полов, должен выполнять автоматический выключатель + УЗО или дифф.автомат у вас в щитке.

В некоторых моделях регуляторов (например RTC 70), стоит встроенный выключатель. Им можно вручную, не бегая к электрощитку, отключить теплые полы.

Многие ошибочно думают, что именно через него проходит весь ток на греющий кабель. Это не так. Этот переключатель отвечает только за подачу питания на плату, отсюда и такой его малый рабочий ток – 6А.

Настройка работы теплого пола с неисправным датчиком

Электронные модели в отличие от механических, сами должны помогать пользователям в определении неисправностей. Например, при поломке датчика температуры, у них на экране должны будут высвечиваться не типичные значения или ошибка E5.

Чтобы дальше продолжать пользоваться теплыми полами, несмотря на неисправность, некоторые модели это позволяют, необходимо проделать следующее:

  • отключаете от клемм провода на датчик
  • терморегулятор переводите в режим таймера

Некоторые модели это делают автоматически, в других видах нужно зажать кнопки вверх-вниз одновременно.

  • на экране высвечивается номер программы
  • перебирая кнопками вверх-вниз можно подобрать комфортную температуру согласно программы

В механических марках, например DeviReg 130, такой способ тоже применим. Вытаскиваете провода от датчика и выкручиваете регулировочное колесико между положениями 3-4.

В этом режиме можно будет добиться оптимальной комфортной температуры теплых полов. Правда, включены они у вас будут постоянно.

А если явного обрыва нет, а мультиметр даже показывает какие-то значения, как узнать, что терморезистор неисправен? Нужно сравнить его паспортные данные с теми, что определяются фактически при замерах.

Например, заводские данные термостата – 15кОм при t=25С.

А вот, что показывает тестер при замерах: 

Здесь конечно нужно учитывать температурный коэффициент. Если он негативный, то при повышении t от 25С сопротивление будет падать. При более низкой температуре, сопротивление увеличивается.

То есть, будет выше 15кОм. Вот результат замера такого же исправного датчика при t уже 20С:
С качественными терморегуляторами, температурными датчиками и другими комплектующими ведущих фирм, а также с текущими ценами по теплым полам на сегодняшний день, можно ознакомиться здесь.

Повреждение греющего кабеля и нагревательного мата

Если вы проверили датчик, терморегулятор, все контакты и замечаний по их работе нет, а пол по-прежнему не греет, то остается искать повреждение в самом греющем кабеле.

Явное короткое замыкание диагностировать можно простым мультиметром. А вот чтобы установить его точное место, без специальных дорогостоящих приборов, увы не обойтись.

В начале диагностики тестером проверяете сопротивление между жил кабеля. Оно должно быть в пределах заводских данных – от 11 до 700 Ом, в зависимости от длины.

Поэтому всегда сохраняйте паспортную документацию на теплые полы. Вклеивайте туда шильдики с кабельной продукции, записывайте показания изначальных сопротивления изоляции и сопротивления жил.

Потом при возникновении проблем, легко можно будет определить, что за кабель уложен, его длину, заводское сопротивление. Также не мешает сделать фотографию или зарисовку зон укладки.

Если короткого замыкания между жил нет, значит дело в плохой изоляции, идем дальше. Проверяете сопротивление, опять же пока тестером, между жилой и экраном.

Здесь показания должны стремиться к бесконечности – или отображается единичка с левой стороны на экране токоизмерительных клещей. При нулевых показаниях все понятно – жила где-то явно замкнута на экран.

А вот если мультиметр показывает сопротивление в несколько сотен Ом или даже кОм, тогда подключаете мегаомметр на 2500В и подаете повышенное напряжение между оплеткой и нагревательной жилой.

И вот если у вас при этом сопротивление изоляции будет падать до ноля, то это и говорит, что кабель пробит и нужно искать место повреждения.

Причем при меньшем напряжении в 500В или 1000В этого можно и не узнать.

Для новых нагревательных кабелей от качественных производителей (Devi, Veria и др.) сопротивление должно быть не ниже 1 ГОм при напряжении 2,5кВ.

Например, нагревательные маты производители на заводе проверяют напряжением 3кВ с погружением в воду.

Прожиг кабеля и генератор сигналов

Чтобы найти точное место неисправности, нужно иметь специализированные приборы представляющие из себя:

  • трансформатор для прожига
  • генератор сигналов
  • эл.магнитный приемник сигналов
  • тепловизор

В домашних условиях никто таких приборов не имеет, поэтому придется вызывать специалиста. Как происходит поиск таких неисправностей можно ознакомиться в подробном видео с реального объекта:

Порядок такой:

  • прожигается место слабой изоляции

Для этого подается повышенное напряжение в точку пробоя (до 10кВ!). При одновременном напряжении на жилах до 350В, создается розжиг сварочной дуги.

Эта дуга, как бы наваривает углеродную дорожку в месте соединения проводников, током до 3А и образует замкнутый контур.

  • генератором подается сигнал в кабель
  • эл.магнитным датчиком, выступающим в качестве приемника, находится примерное место замыкания. Все это без вскрытия плитки или другого напольного покрытия.
  • тепловизором просматривается вся площадь более внимательно и визуально устанавливается точное место КЗ. Там, где делали прожиг, будет завышенная температура.

С нагревательными матами поиск проще, так как они расположены близко к поверхности. А вот с кабелем гораздо сложнее, особенно под толстой стяжкой. Она сильно ослабляет сигнал, и поиск КЗ может занять гораздо больше времени.

Если у вас еще на стадии проверки мультиметром, показало замыкание двух жил между собой, то здесь ничего и прожигать не нужно. Сразу подключаете на них генератор и ищите точку.

Обрыв жилы греющего кабеля

Ну и еще одна распространенная ситуация – обрыв жилы. Это одна из самых неприятных аварий. Кабель прожечь невозможно, замыкания никакого нет и даже тепловизор здесь бесполезен.

Чаще всего такое повреждение происходит в муфтах – начальной, соединительной или концевой.

Там нагревательные жилки очень тонкие, и нередко именно в этом месте, почему-то умудряются сделать поворот трассы.

При явном обрыве и мультиметр и мегаомметр покажут сопротивление между жил близкое к бесконечности. Но если какой-то неустойчивый контакт все еще остался, то тестер может показать вполне хорошие данные, например 200-300 Ом.

Вот только при включении под напряжение 220В никакого полноценного нагрева не будет, а рабочий ток составит максимум несколько миллиампер, вместо положенной нагрузки в несколько Ампер.

Кабель в итоге будет прогреваться еле-еле, и ни о каком нормальном отоплении естественно речи уже быть не может.

Зачастую даже прожиг здесь бесполезен. И все что остается – это разобрать самые подозрительные места, в первую очередь те плитки, под которыми установлены муфты.

Теоретически можно попробовать применить методы поиска проводки под штукатуркой. 

В соединительных муфтах кабель не будет полностью экранирован. И подав на жилу напряжение, можно попытаться засечь сигнал, там где пропадает фаза, т.е. как раз в месте обрыва. Но очень многое будет зависеть от глубины залегания и специфики повреждения.

Статьи по теме

Термостат для теплого пола - Руководство для термостата поверхностного отопления

В этой статье мы расскажем о термостатах полов с подогревом или термостатах лучистого тепла или термостатах полов с подогревом, - термостатах, предназначенных для управления системами теплого пола. Прежде чем углубляться в различные модели термостатов, давайте подробнее поговорим о теплых полах и используемых системах. «Полы с подогревом» или «напольное отопление» часто называют «лучистым отоплением», обычно в США, и для обогрева полов до оптимальной температуры в течение зимнего сезона устанавливаются системы подогрева полов.

Несмотря на то, что в большинстве домов в США используется отопление на основе центральной печи или тепловые насосы, энергия этих систем HVAC не нагревает полы должным образом. Системы отопления, вентиляции и кондиционирования воздуха (например, печи или тепловые насосы) предназначены для нагрева воздуха и циркуляции горячего воздуха по помещению. Они сохраняют тепло в помещении, но не нагревают пол до желаемой температуры. В таких ситуациях вам будет холодно!

Решением здесь является «теплые полы» - система обогрева устанавливается под полом для поддержания надлежащей температуры зимой.Для создания «теплого пола» доступны два типа систем - электрическая или водяная (известная как водяное лучистое отопление). Эти системы теплого пола регулируются с помощью специально разработанных термостатов, известных как термостаты с подогревом пола.

Термостаты для теплого пола

Как вы знаете, система подогрева пола устанавливается отдельно, независимо от общей системы отопления, вентиляции и кондиционирования в вашем доме. Термостаты, которые вы используете для систем отопления, вентиляции и кондиционирования воздуха (например, центральная печь или тепловой насос), могут не подходить для регулирования вашей системы теплого пола.Однако есть некоторые модели, которые совместимы как с системами отопления, вентиляции и кондиционирования, так и с системами теплого пола. Термостат Nest - классический пример, который можно использовать для регулирования систем теплого пола (подходит только для водяных излучающих систем). С другой стороны, такие компании, как Honeywell, Nuheat и SunTouch, имеют модели термостатов, предназначенные для систем напольного отопления. Давайте посмотрим на некоторые из лучших термостатов для систем лучистого теплого пола и на то, чем они отличаются друг от друга!

2 типа - Электрические и гидравлические термостаты

Как мы писали выше, существует два типа систем теплого пола - электрическая и водяная.Термостат, разработанный для системы электрического теплого пола, не подходит для системы водяного / водяного лучистого отопления (и наоборот). Поэтому мы перечислили эти 2 типа отдельно, чтобы избежать путаницы.

Электрические термостаты для теплого пола

Давайте сначала познакомимся с некоторыми из лучших моделей термостатов электрического теплого пола. Система электрического теплого пола использует электричество для обогрева полов (под ним устанавливается хорошо изолированное электрическое гнездо). Обычно они работают от сетевого напряжения - 110 или 240 вольт.Итак, вам нужен термостат сетевого напряжения, совместимый с системами теплого пола.

Программируемый термостат для теплого пола

Давайте сначала познакомимся с лучшими программируемыми терморегуляторами для систем электрического теплого пола. Программируемые термостаты можно запрограммировать так, чтобы они следовали предпочтительному графику (в зависимости от вашего образа жизни) и соответствующим образом управляли вашей системой отопления. Существуют также модели термостатов с поддержкой Wi-Fi для систем теплого пола, которые вы можете увидеть ниже (термостат Nuheat WiFi № 3), которыми можно управлять через Интернет.

# 1 - Honeywell Th215-AF-GA / U - Термостат подогрева пола

Honeywell - Электрический термостат для подогрева пола

Honeywell (Th215-AF-GA / U) - один из самых продаваемых электрических термостатов для подогрева пола. Эта модель с 7-дневным программированием и поставляется с датчиком температуры пола (для лучшего контроля температуры) и GFCI (защита от замыкания на землю), который необходим для систем линейного напряжения. Эта модель предлагает три режима обогрева: окружающий, пол и окружающий с режимами пола, которые можно настроить в соответствии с предпочтениями вашей системы.

Проверить цену и просмотреть подробности

Термостат с датчиком температуры пола обеспечивает постоянное поддержание заданной температуры полов (не становится слишком холодным / горячим). Если датчик температуры пола отсутствует, существует редкая вероятность того, что полы перегреются или станут слишком холодными, в то время как система подогрева пола пытается достичь температуры воздуха.

Следует помнить о технических характеристиках:

  • Этот термостат подходит только для систем электрического теплого пола.
  • Только резистивная нагрузка - убедитесь, что тип нагрузки вашей системы теплого пола резистивная.
  • Максимальный ток составляет 15 А (в любом случае 120 вольт или 240 вольт). Если ваша система отопления потребляет более 15 А, этот термостат несовместим.
  • Максимальная мощность составляет 1800 Вт при 120 В и 3600 Вт при 240 В. Проверьте требования к мощности вашей системы теплого пола и убедитесь, что она находится в пределах указанной номинальной мощности.

# 2 NuHeat Термостат для излучающего пола (двойное напряжение)

Nuheat Home - Термостат для излучающих полов

Наш выбор № 2 - это термостат NuHeat для систем электрического теплого пола.Эта модель программируется на 2 дня (будний / выходной), поставляется с 3,5-дюймовым цветным сенсорным дисплеем и совместима с двумя напряжениями (120 или 240 вольт). Эта модель поставляется с «Монитором использования энергии», который помогает контролировать потребление энергии в течение недели или месяца. Вы можете перепрограммировать свой термостат (на основе данных об использовании энергии), чтобы сэкономить электроэнергию и сэкономить на счетах.

NuHeat - Проверить цену

Хотя мы назвали Nuheat Home вторым выбором (из-за высокой цены по сравнению с Honeywell), эта модель на самом деле является одним из лучших доступных термостатов для пола с подогревом.Модель Nuheat home имеет два датчика температуры, датчик температуры пола и датчик температуры воздуха. Включена защита GFCI для предотвращения поражения электрическим током из-за утечки тока снизу.

Основные моменты:

  • Подходит для всех типов систем электрического теплого пола. Поддерживает двойное напряжение (120/240 вольт)
  • GFCI - обнаружение и отключение замыкания на землю встроено и настроено на утечку 5 мА.
  • Тип пола - подходит для полов из плитки и камня.Предел отсечки температуры установлен на 82 ° F для деревянных полов (ламинат и паркетные полы)
  • Поддержка языков: английский / французский / испанский
  • Индивидуальные настройки - например, установка часов в 12-часовой или 24-часовой режим, яркость экрана, отображение температуры в ° C или ° F и множество других параметров настройки.
  • Автоматический / ручной режим - выберите «автоматический» режим, чтобы следовать запрограммированному расписанию, и «ручной» режим, чтобы обойти запрограммированное расписание и установить собственную температуру.
  • 3 режима измерения температуры - как и в модели Honeywell, описанной выше, этот термостат может регулировать окружающий воздух, температуру пола или и то, и другое вместе в комбинированном режиме.

# 3 WiFi термостат для обогрева полов от NuHeat

Nuheat Signature - Wi-Fi термостат для подогрева пола

Нашим выбором № 3 является вариант WiFi вышеуказанной модели - NuHeat Signature беспроводной / WiFi излучающий термостат для теплого пола. Эта модель имеет дополнительную функцию WiFi наряду со всеми функциями вышеперечисленной модели №2.Если вы предпочитаете термостат с поддержкой Wi-Fi для вашей системы теплого пола, Nuheat Signature - это модель goto.

Проверить цену и подробности

Nuheat Signature совместим с Amazon Alexa, Google Home, а также поддерживает протоколы IFTTT. Если в вашем доме установлен термостат Nest, Nuheat Signature может использовать датчики присутствия (внутри Nest) для экономии энергии, когда никого нет дома.

# 4 SunTouch Command - Термостат для подогрева пола

SunTouch Command - термостат для подогрева пола

Наш выбор № 4 - это SunTouch Command, который представляет собой 7-дневный программируемый сенсорный термостат для пола с подогревом.Эта модель также поставляется с датчиком температуры пола, и доступна опция измерения температуры воздуха. Цвет дисплея регулируется, а размер шрифта большой для удобства чтения.

Проверить цену и подробности

Регулируемый цветной дисплей и красочное кольцо можно настроить так, чтобы он соответствовал вашему домашнему интерьеру.

Основные моменты:

  • 3,5-дюймовый сенсорный экран с ярким дисплеем, 7 дней программирования и мониторинг энергопотребления.
  • Совместим с электрическими системами теплого пола с номинальным током до 15 А.
  • Совместимость с двумя напряжениями (120 В / 240 В) и защита GFCI включена.
  • Доступны режимы измерения пола и воздуха.
  • Датчик температуры пола - 15 футов 10K провод датчика, входящий в комплект поставки модели.
  • В один термостат можно подключить до 3 электрических ковриков для теплого пола (при условии, что комбинированная нагрузка находится в пределах спецификации)

Термостаты водяного теплого пола

Термостаты водяного теплого пола используются для регулирования водяных систем теплого пола, которые в основном являются системами водяного отопления.Системы водяного отопления обычно бывают двух типов: 1) подземные системы - в которых трубы диаметром 1,6 см заглублены глубоко под полом; 2) Накладные системы - трубы 1,2 см укладываются поверх существующего пола. Гидравлические термостаты подходят для обоих типов систем водяного отопления, независимо от того, монтируются они под землей или на поверхности. Давайте посмотрим на некоторые из лучших доступных гидравлических термостатов.

# 1 Aube от Honeywell - Th240-28-01-B / U - Программируемый гидравлический термостат

Эта модель от Aube (от Honeywell) - наш выбор №1 среди гидравлических термостатов.Aube Th240-28-01-B / U - это 7-дневный программируемый многоцелевой термостат, подходящий для систем водяного теплого пола, милливольтных газовых каминных обогревателей, водяных систем котлов, систем лучистого отопления и систем обогрева сетевого напряжения.

Давайте посмотрим основные моменты:

  • Совместим с широким спектром систем - 120 В, 240 В, милливольт и 24 В (низкое напряжение).
  • Подходит для систем водяного отопления, газовых каминов, систем сетевого напряжения (например, отопления плинтусов).гидросистемы котлов и многое другое.
  • Номинальный ток - 5А (резистивный)
  • Защита насоса для предотвращения заклинивания насоса (включает насос на 1 минуту каждые 24 часа)
  • Предупреждение о низком заряде батареи в течение 60 дней

# 2 Nest Smart Thermostat для систем отопления полов

Если вы хотите установить интеллектуальный термостат для вашей системы водяного отопления, Nest - лучший вариант. . Если у вас уже есть термостат Nest в вашем доме, вы можете использовать ту же модель для управления своей системой водяного лучистого отопления.Термостат Nest оснащен функцией «истинное излучение» , которая специально встроена для систем лучистого отопления полов или систем радиаторного отопления.

Nest - хороший выбор (особенно с функцией истинного излучения), если вы ищете интеллектуальный термостат для регулирования всей системы отопления вашего дома (в том числе системы лучистого отопления в полу). Вам не нужно покупать отдельный термостат для системы теплого пола, если вы выбираете Nest (который также можно использовать для обычной системы центрального отопления).

# 3 Aube by Honeywell Th235-01-B / U - Непрограммируемый термостат водяного отопления

Наш выбор № 3 - непрограммируемый термостат жидкостного отопления от Aube by Honeywell. Если вы предпочитаете недорогую модель (без возможности программирования), эта модель - лучший выбор, который вы можете получить со всеми основными функциями. Эта модель в основном очень похожа на нашу модель № 1 в гидравлических термостатах (Aube Th240-28-01-B / U) без возможности программирования.

Давайте посмотрим на основные моменты:

  • Совместим с системами водяного теплого пола, системами центрального отопления, милливольтными системами и электрическими нагревательными приборами, использующими реле.
  • Номинальный ток: 2 А (индуктивная нагрузка)
  • Термостат низкого напряжения - 24 Вольт R, W
  • Функция удаленного входа - изменение температуры по телефону (если у вас телефонный контроллер)
  • Индикатор разряда батареи - до 60 дней.
  • Защита насоса для предотвращения заклинивания насоса (включает насос на 1 минуту каждые 24 часа)
.

Нагревательная плита - Универсальное решение для контроля температуры с режимами - Решения

Дни становятся короче, а температуры медленно падают. Лето в северном полушарии почти закончилось, и с этим многим снова приходится думать о том, чтобы держать ноги в тепле.

Нормальный человек включил бы термостат или зажег камин, но не энтузиаст домашней автоматизации!

Полностью автоматизированная система расписания обогрева - один из ключевых компонентов любой системы домашней автоматизации.В этом руководстве я расскажу вам об одной из возможных реализаций автоматизации отопления с помощью openHAB.

TL; DR; - Перейдите к «Окончательному результату», чтобы найти файлы конфигурации, используемые в этом руководстве.


ПЕРВАЯ ТЯГА

Имейте в виду, что руководство еще не закончено, и некоторые детали могут отсутствовать. На следующей неделе я буду путешествовать, и у меня не будет времени продолжать. Решил выложить скорее раньше, чем позже.Комментарии приветствуются!


Боковое примечание: рекомендуемые температуры

В целом можно согласиться, что у каждого свои предпочтения относительно идеальной температуры в конкретном помещении. Обширные рекомендации и онлайн-исследования предлагают несколько иные настройки. Большинство из них согласны с несколькими основными правилами:

  • Не перегревать. Вы сжигаете деньги, а человеческое тело не нуждается в дополнительном тепле. Только увеличивайте до комфортных температур.
  • Нагревайте только там, где это необходимо.Коридор или туалет не обязательно должны быть уютными. Теплая спальня не идеальна для сна. Составьте график температур для каждой комнаты.
  • Не позволяйте дому остывать. Нагревание холодной мебели и стен требует больше энергии, чем поддержание температуры на определенном уровне в течение нескольких часов.
  • Не опускайтесь ниже определенной точки. Даже при отсутствии на длительное время температура должна оставаться выше определенной температуры. В противном случае трубы могут замерзнуть или во влажных углах может образоваться плесень.

Помните: Настройки температуры и времени, а также преимущества и риски, а также потенциальная экономия затрат на электроэнергию зависят от вашего дома, ваших соседей и поведения вашей семьи. Составить идеальный график непросто, но некоторые полевые испытания быстро дадут результаты

В рамках этого урока мы будем работать со следующими температурами:

  • 21 ° C - Комфортная температура для комнат, в которых мы проводим время
  • 19 ° C - Комфортная температура для помещений, которые мы находимся в более короткие сроки
  • 17 ° C - Нормальная температура в течение дня, когда никого нет дома
  • 15 ° C - Пониженная температура, когда никого нет дома несколько дней
  • 13 ° C - Пониженная температура, когда никого нет дома длительное время

Реализация openHAB

В следующих частях учебного пособия описывается реализация нагревательной плиты в вашем доме.Поскольку каждый дом уникален и у всех разные предпочтения в отношении отопления, вам придется адаптировать, расширять и удалять части примера по мере продвижения.

Обоснование: Представленное здесь решение имеет сложность, позволяющую легко понять и воспроизвести. Многие аспекты того, как настраиваются или временно регулируются температуры, могут быть улучшены, что в свою очередь ограничит простоту использования. Учебник планировался как руководство для новых пользователей openHAB. Не стесняйтесь распространять идеи и публиковать свои результаты в комментариях ниже.

Необходимое условие: приводы отопления

Ваши исполнительные механизмы нагревателя, термостат или элементы управления нагревом должны быть подключены к openHAB с помощью одной из бесчисленных привязок или любого другого поддерживаемого метода. В этом примере предположим, что следующие элементы могут контролировать вашу целевую температуру:

  Number LR_Heating_TargetTemp "Целевое значение отопления жилой комнаты [% .1f ° C]" {/*... некоторая конфигурация привязки * /} Number BE_Heating_TargetTemp "Целевое значение обогрева спальни [% .1f ° C]" {/*... некоторая конфигурация привязки * /} Number BA_Heating_TargetTemp "Целевое значение обогрева ванной комнаты [%.1f ° C] "{/*... некоторая конфигурация привязки * /}  

Многие доступные устройства, переносящие ваше отопление в openHAB, уже будут выполнять внутренний контроль температуры, оставляя нам канал «Целевая температура» для установки целевого значения гистерезиса управления. Однако не все решения могут обеспечить такой комфорт, см. Ниже, чтобы найти алгоритм гистерезиса контроля температуры, реализованный в openHAB. (TODO)

Для дальнейших идей автоматизации или красивых презентаций пользовательского интерфейса могут потребоваться другие свойства ваших нагревателей (например, текущая температура или настройка клапана) в качестве элементов.Для чистого графика нагрева, представленного ниже, все, что имеет значение, - это целевые значения температуры.

Представляем режимы нагрева

Основная идея нагревательной плиты состоит в том, чтобы иметь одну настройку режима нагрева для всей установки. Выбранный режим будет контролировать все заданные температуры в отдельных помещениях. Этой цели будет служить виртуальный предмет:

  String Heating_Mode «Общий режим нагрева [% s]»  

Каждый из выбираемых режимов имеет свой особый случай использования, а шаблон Boilerplate подготовлен таким образом, чтобы его можно было легко расширить за счет новых режимов или использовать в сочетании с другими решениями (например, с календарём или прерыванием на основе местоположения).

Основной режим: нормальный график обогрева

Boilerplate включает один график обогрева Normal , который - при нормальных обстоятельствах - гарантирует, что в комнатах будет тепло, когда это необходимо. Идея не нова, и ее можно найти в большинстве других решений автоматизации. Этот подход работает для большинства домашних хозяйств и, вероятно, вы захотите использовать его в течение обычной недели.

Не беспокойтесь, исключения для определенных периодов времени или для отдельных комнат все еще могут быть смешаны в режиме Нормальный , и примеры будут показаны ниже.

Если вы считаете, что вам нужно более одного регулярного расписания, идею «нормального» режима легко воспроизвести для второго или третьего набора времени и температуры.

Предустановленные элементы температуры
Сначала нам нужно определить виртуальные элементы для целевой температуры во время режима нагрева Нормальный . Они будут обновляться по правилам, чтобы отражать желаемую целевую температуру в течение дня. Использование дополнительных элементов отделяет график от фактического режима нагрева, активного в данный момент на отдельных нагревателях.Этот шаг дает нам больше гибкости.

Создайте один элемент предустановленной температуры для каждого нагревателя / помещения:

  Number LR_Heating_PresetTempNormal «Предварительная установка обогрева гостиной (нормальный режим) [% .1f ° C]» Number BE_Heating_PresetTempNormal "Предварительная установка обогрева спальни (нормальный режим) [% .1f ° C]" Number BA_Heating_PresetTempNormal "Предварительная установка обогрева ванной комнаты (нормальный режим) [% .1f ° C]"  

Кроме того, мы собираемся определить один единственный элемент переключателя, который будет запускать последующие процедуры и, следовательно, воздействовать на исполнительные механизмы или контроллеры отопления:

  Переключатель Heating_UpdateHeaters "Отправка заданных значений температуры в нагреватели"  

Определение расписания
Следующим шагом является определение фактического нормального расписания отопления, основанного на времени.Мы собираемся использовать самый простой способ, который позволяет нам openHAB, через правила, запускаемые cron.

В этом примере для планирования обычного рабочего дня достаточно трех правил:

▼ 1. Нагревание кривошипа после работы (17:00)

  правило «17:00» когда Время cron "0 0 17? * * *" тогда LR_Heating_PresetTempNormal.postUpdate (21.0) BE_Heating_PresetTempNormal.postUpdate (17.0) BA_Heating_PresetTempNormal.postUpdate (20.0) Heating_UpdateHeaters.sendCommand (ВКЛ) конец  
2.Повышение температуры вечером (20:30)
  правило «20:30» когда Время cron "0 30 20? * * *" тогда LR_Heating_PresetTempNormal.postUpdate (22.0) BE_Heating_PresetTempNormal.postUpdate (19.0) BA_Heating_PresetTempNormal.postUpdate (20.0) Heating_UpdateHeaters.sendCommand (ВКЛ) конец  
3. Пониженная температура нагрева перед сном (23:30)
  правило «23:30» когда Время cron "0 30 23? * * *" тогда LR_Heating_PresetTempNormal.postUpdate (17.0) BE_Heating_PresetTempNormal.postUpdate (17.0) BA_Heating_PresetTempNormal.postUpdate (17.0) Heating_UpdateHeaters.sendCommand (ВКЛ) конец  

Уик-энды немного особенные, но их можно легко покрыть повторным использованием и расширением приведенных выше правил. В примере ниже мы просто добавим более высокую температуру в течение дня.

4. В субботу и воскресенье: комфортная температура днем.
  правило «9:00, выходные». когда Время cron "0 0 9? * СБ-ВС *" тогда LR_Heating_PresetTempNormal.postUpdate (21.0) BE_Heating_PresetTempNormal.postUpdate (17.0) BA_Heating_PresetTempNormal.postUpdate (21.0) Heating_UpdateHeaters.sendCommand (ВКЛ) конец  

Еще один пример, который мне очень нравится:

5. Будний день: Уютный санузел утром
  правило «8:00, будний день, санузел» когда Время cron "0 0 8? * ПН-ПТ *" тогда BA_Heating_PresetTempNormal.postUpdate (23.0) Heating_UpdateHeaters.sendCommand (ВКЛ) конец правило «9:00, будний день, санузел» когда Время cron "0 0 9? * ПН-ПТ *" тогда BA_Heating_PresetTempNormal.postUpdate (17.0) Heating_UpdateHeaters.sendCommand (ВКЛ) конец  

И все. Полная ежедневная неделя, сопровождаемая графиком отопления, который «просто работает».

Вы можете быть разочарованы тем, что руководство «График обогрева» для вашего умного дома закончилось таким жестким графиком. Вы правы, и здесь в игру вступают другие режимы нагрева и исключения!

Специальные режимы нагрева

Режим отопления Нормальный подходит для нормальной недели.Однако жизнь не всегда бывает нормальной. Мы должны подготовиться к тому времени, когда мы хотим, чтобы отопление отключалось во время поездки на выходные или оставалось включенным, когда мы дома больны.

Модель Boilerplate учитывает следующие режимы нагрева:

  • НОРМАЛЬНЫЙ - Нормальный режим отопления представлен выше
  • PARTY - поддерживать температуру в течение более длительного времени и в большем количестве комнат, сбрасывать на НОРМАЛЬНУЮ в течение ночи
  • БОЛЬНИЧНЫЙ ДЕНЬ - Нагрев до более высокой температуры в течение дня, сброс на НОРМАЛЬНЫЙ ночью
  • WEEKEND_TRIP - Поддерживайте нормальную температуру в выходные дни, сбросьте на НОРМАЛЬНУЮ после
  • AWAY - Для отпуска или длительных поездок температура понижается до безопасного значения, без сброса
  • OFF_SUMMER - Все отопление выключено

Алгоритм переключения между этими режимами и отправки заданной температуры фактическим исполнительным механизмам отопления теперь довольно прост:

  правило «Реагировать на переключатель режима нагрева, отправлять целевые температуры» когда Пункт Heating_Mode получил обновление или Пункт Heating_UpdateHeater получил команду ON тогда Heating_UpdateHeater.postUpdate (ВЫКЛ.) logInfo ("heating_mode.rules", "Heating Mode:" + Heating_Mode.state) switch Heating_Mode.state { case "NORMAL": { LR_Heating_TargetTemp.sendCommand (LR_Heating_PresetTempNormal.state as Number) BE_Heating_TargetTemp.sendCommand (BE_Heating_PresetTempNormal.state as Number) BA_Heating_TargetTemp.sendCommand (BA_Heating_PresetTempNormal.state as Number) } case "PARTY": { LR_Heating_TargetTemp.sendCommand (21.0) BE_Heating_TargetTemp.sendCommand (15.0) BA_Heating_TargetTemp.sendCommand (19.0) } case "SICKDAY": { LR_Heating_TargetTemp.sendCommand (23.0) BE_Heating_TargetTemp.sendCommand (19.0) BA_Heating_TargetTemp.sendCommand (23.0) }  
  case "WEEKEND_TRIP": { LR_Heating_TargetTemp.sendCommand (15.0) BE_Heating_TargetTemp.sendCommand (15.0) BA_Heating_TargetTemp.sendCommand (15.0) } case "AWAY": { LR_Heating_TargetTemp.sendCommand (13.0) BE_Heating_TargetTemp.sendCommand (13.0) BA_Heating_TargetTemp.sendCommand (13.0) } case "OFF_SUMMER": { LR_Heating_TargetTemp.sendCommand (0.0) BE_Heating_TargetTemp.sendCommand (0.0) BA_Heating_TargetTemp.sendCommand (0,0) } по умолчанию: {logError ("Heating_mode.rules", "Неизвестный режим нагрева:" + Heating_Mode.state)} } конец  

Последняя деталь, которой сейчас не хватает, - это автоматическое переключение из некоторых из этих режимов обратно в режим Normal в определенное время.

Теперь это должно быть очевидным.
  правило «Завершить режим ВЕЧЕРИНКИ и ДНЯ БОЛЕЗНИ в 2:00 ночи» когда Время cron "0 0 2? * * *" тогда if (Heating_Mode.state == "PARTY" || Heating_Mode.state == "SICKDAY") { Heating_Mode.postUpdate ("НОРМАЛЬНЫЙ") } конец правило "Завершить режим WEEKEND_TRIP в 13:00 в понедельник" когда Время cron "0 0 13? * MON *" тогда if (Heating_Mode.state == "WEEKEND_TRIP") { Heating_Mode.postUpdate ("НОРМАЛЬНЫЙ") } конец  

Инициализация и восстановление виртуальных объектов

Теперь, когда расписание нагрева и режимы нагрева реализованы, мы должны позаботиться о случае, когда запускается openHAB или перезагружается конфигурация openHAB.Это следует учитывать со всеми правилами, чтобы избежать неожиданных состояний и плохого поведения.

После запуска, перезапуска или перезагрузки openHAB все последние состояния элементов теряются. Элементы, привязанные к Binding, обычно будут повторно инициализированы Binding в течение нескольких секунд, но элементы без канала Binding не будут инициализированы (чтобы быть технически правильным, они инициализируются как NULL ).

Мы собираемся применить две концепции, чтобы убедиться, что представленные виртуальные объекты находятся в значимом состоянии, когда это возможно.Стратегия сохранения restoreOnStartup (например, с использованием mapDB) используется для сброса предыдущего состояния:

  Стратегии { по умолчанию = everyUpdate } Предметы { Режим_обогрева: стратегия = everyUpdate, restoreOnStartup Heating_PresetNormal_Group *: strategy = everyUpdate, restoreOnStartup }  

Если старое состояние не известно системе (например, при первой настройке), используется правило Система запущена для инициализации элементов с безопасными значениями:

  правило «Инициализировать неинициализированные виртуальные элементы» когда Система запущена тогда createTimer (сейчас.plusSeconds (180)) [| if (Heating_Mode.state == NULL) Heating_Mode.postUpdate ("НОРМАЛЬНЫЙ") Heating_PresetNormal_Group.members.filter [элемент | item.state == NULL] .forEach [item | item.postUpdate (19.0)] ] конец  

Окончательный результат

Вот пример того, как может выглядеть карта сайта со всеми данными и элементами управления. Я мог бы в конечном итоге опубликовать это. Спросите меня об этом, если вам интересно.

Чтобы решение работало в вашей системе, создайте следующие файлы с предоставленным содержимым и примените указанные изменения:

Файл конфигурации элементов

heating_mode.items
  Number LR_Heating_TargetTemp "Целевое значение обогрева жилой комнаты [% .1f ° C]" {/*...некоторая конфигурация привязки * /} Number BE_Heating_TargetTemp "Целевое значение обогрева спальни [% .1f ° C]" {/*... некоторая конфигурация привязки * /} Number BA_Heating_TargetTemp "Целевое значение обогрева ванной комнаты [% .1f ° C]" {/*... некоторая конфигурация привязки * /} String Heating_Mode "Общий режим отопления [% s]" Переключите Heating_UpdateHeaters "Отправлять заданные значения температуры в нагреватели" Группа Heating_PresetNormal_Group Number LR_Heating_PresetTempNormal "Предварительная установка обогрева гостиной (нормальный режим) [%.1f ° C] "(Heating_PresetNormal_Group) Number BE_Heating_PresetTempNormal «Предварительная установка обогрева спальни (нормальный режим) [% .1f ° C]» (Heating_PresetNormal_Group) Number BA_Heating_PresetTempNormal "Предварительная установка обогрева ванной комнаты (нормальный режим) [% .1f ° C]" (Heating_PresetNormal_Group)  
  1. Поиск и замена LR_Heating_ * и т. Д. На ваше собственное устройство / название комнаты
  2. Дубликат LR_Heating_ * линий для большего количества устройств / комнат в вашем доме

Файл конфигурации правил

heating_mode.rules
  val Строка filename = "heating_mode.rules" правило «Инициализировать неинициализированные виртуальные объекты» когда Система запущена тогда createTimer (now.plusSeconds (180)) [| logInfo (имя файла, «Выполнение правила« Система запущена »для отопления») if (Heating_Mode.state == NULL) Heating_Mode.postUpdate ("НОРМАЛЬНЫЙ") Heating_PresetNormal_Group.members.filter [элемент | item.state == NULL] .forEach [item | item.postUpdate (19.0)] ] конец правило «Реагировать на переключатель режима нагрева, отправлять целевые температуры» когда Пункт Heating_Mode получил обновление или Пункт Heating_UpdateHeater получил команду ON тогда Heating_UpdateHeater.postUpdate (ВЫКЛ.) logInfo (имя файла, "Режим нагрева:" + Режим_обогрева.state) switch Heating_Mode.state { case "NORMAL": { LR_Heating_TargetTemp.sendCommand (LR_Heating_PresetTempNormal.state as Number) BE_Heating_TargetTemp.sendCommand (BE_Heating_PresetTempNormal.state as Number) BA_Heating_TargetTemp.sendCommand (BA_Heating_PresetTempNormal.state as Number) } case "PARTY": { LR_Heating_TargetTemp.sendCommand (21.0) BE_Heating_TargetTemp.sendCommand (15.0) BA_Heating_TargetTemp.sendCommand (19.0) } case "SICKDAY": { LR_Heating_TargetTemp.sendCommand (23.0) BE_Heating_TargetTemp.sendCommand (19.0) BA_Heating_TargetTemp.sendCommand (23.0) } case "WEEKEND_TRIP": { LR_Heating_TargetTemp.sendCommand (15.0) BE_Heating_TargetTemp.sendCommand (15.0) BA_Heating_TargetTemp.sendCommand (15.0) } case "AWAY": { LR_Heating_TargetTemp.sendCommand (13.0) BE_Heating_TargetTemp.sendCommand (13.0) BA_Heating_TargetTemp.sendCommand (13.0) } case "OFF_SUMMER": { LR_Heating_TargetTemp.sendCommand (0.0) BE_Heating_TargetTemp.sendCommand (0.0) BA_Heating_TargetTemp.sendCommand (0,0) } по умолчанию: {logError (имя файла, "Неизвестный режим нагрева:" + Heating_Mode.state)} } конец // ======================== // режим сбрасывается правило "Завершить ВЕЧЕРИНКУ и режим ДНЯ БОЛЕЗНИ в 2:00 ночи" когда Время cron "0 0 2? * * *" тогда if (Heating_Mode.state == "PARTY" || Heating_Mode.state == "SICKDAY") { Heating_Mode.postUpdate ("НОРМАЛЬНЫЙ") } конец правило "Завершить режим WEEKEND_TRIP в 13:00 в понедельник" когда Время cron "0 0 13? * MON *" тогда if (Heating_Mode.state == "WEEKEND_TRIP") { Heating_Mode.postUpdate ("НОРМАЛЬНЫЙ") } конец // ======================== // НОРМАЛЬНОЕ расписание правило «17:00» когда Время cron "0 0 17? * * *" тогда LR_Heating_PresetTempNormal.postUpdate (21.0) BE_Heating_PresetTempNormal.postUpdate (17.0) BA_Heating_PresetTempNormal.postUpdate (20.0) Heating_UpdateHeaters.sendCommand (ВКЛ) конец правило «20:30» когда Время cron "0 30 20? * * *" тогда LR_Heating_PresetTempNormal.postUpdate (22.0) BE_Heating_PresetTempNormal.postUpdate (19.0) BA_Heating_PresetTempNormal.postUpdate (20.0) Heating_UpdateHeaters.sendCommand (ВКЛ) конец правило «23:30» когда Время cron "0 30 23? * * *" тогда LR_Heating_PresetTempNormal.postUpdate (17.0) BE_Heating_PresetTempNormal.postUpdate (17.0) BA_Heating_PresetTempNormal.postUpdate (17.0) Heating_UpdateHeaters.sendCommand (ВКЛ) конец правило «9:00, выходные» когда Время cron "0 0 9? * СБ-ВС *" тогда LR_Heating_PresetTempNormal.postUpdate (21.0) BE_Heating_PresetTempNormal.postUpdate (17.0) BA_Heating_PresetTempNormal.postUpdate (21.0) Heating_UpdateHeaters.sendCommand (ВКЛ) конец правило «8:00, будний день, санузел» когда Время cron "0 0 8? * ПН-ПТ *" тогда BA_Heating_PresetTempNormal.postUpdate (23.0) Heating_UpdateHeaters.sendCommand (ВКЛ) конец правило «9:00, будний день, санузел» когда Время cron "0 0 9? * ПН-ПТ *" тогда BA_Heating_PresetTempNormal.postUpdate (17.0) Heating_UpdateHeaters.sendCommand (ВКЛ) конец  
  1. Поиск и замена LR_Heating_ * и т. Д. На ваше собственное устройство / название комнаты
  2. Дубликат LR_Heating_ * линий для большего количества устройств / комнат в вашем доме
  3. Адаптируйте график и температуру к вашим потребностям

Файл конфигурации сохраняемости

mapdb.persist
  Стратегии { по умолчанию = everyUpdate } Предметы { Режим_обогрева: стратегия = everyUpdate, restoreOnStartup Heating_PresetNormal_Group *: strategy = everyUpdate, restoreOnStartup }  

Файл конфигурации Sitemap

Добавьте следующее в существующий файл карты сайта:

мой дом.карта сайта
  Selection item = Heating_Mode label = "Режим нагрева []" сопоставления = [NORMAL = "Нормальный", PARTY = "Вечеринка", = "Больной день дома", WEEKEND_TRIP = "Уехал на выходные", AWAY = "Время приключений!", OFF_SUMMER = "Выкл. (Летний режим ожидания)" ]  

Надеюсь, это руководство было для вас полезным. Наслаждайтесь своим теплым умным домом и как всегда: Happy Hacking!

.

Управление одной комнатой | Теплый пол в зимнем саду

Теплый пол

Система подогрева пола Speedfit была разработана для быстрой и простой установки с компонентами, разработанными и изготовленными в соответствии с ISO9001 и DIN4726.

В системе Speedfit горячая вода перекачивается из бойлера в насосный агрегат, где она смешивается примерно до 50 ° C, а затем распределяется через коллектор в отопительные контуры, выполненные с использованием барьерной трубы Speedfit.

В бетонных полах труба укладывается на изоляцию, а затем покрывается стяжкой, на которую можно уложить практически любое напольное покрытие.

Для деревянных полов раскладные плиты укладываются между балками и настилом пола или на нижней стороне пола. Труба Speedfit вставляется в канавки на пластинах.

Площадь пола обычно доводится до температуры от 25 ° C до 28 ° C, обеспечивая равномерное распределение тепла при температуре лишь немного выше комнатной.

Широкий спектр электрических компонентов означает, что система UFH может иметь столько или меньше контроля, сколько требуется.

Как работают теплые полы?

«Полы с подогревом» не новость, его принципы восходят к римским временам.В Европе это предпочтительная система, и в некоторых странах на нее приходится 70% новых отопительных систем.

Радиаторная система передает энергию в комнату в основном за счет конвекции. Эта конвекция приводит к тому, что пол становится самой прохладной частью комнаты и оставляет массу теплого воздуха на уровне потолка.

Он также собирает мелкую пыль с пола и разносит ее по воздуху и по мебели.

Это может означать, что большая часть энергии, которая была вложена в комнату, тратится впустую, а не в том месте, где вы хотите.

Система УВГ нагревается в основном за счет излучения. Это наиболее естественный и комфортный вид обогрева - как солнце.

Лучистая энергия, излучаемая полом, частично отражается каждой поверхностью и частично поглощается. Когда он поглощается, эта поверхность становится вторичным излучателем.

Через некоторое время все поверхности становятся вторичными излучателями. Сами предметы интерьера излучают энергию, и комната становится равномерно и равномерно нагретой. Энергия проникает в каждый уголок комнаты - ни холодных пятен, ни горячих потолков, ни холодных ног.

По сравнению с другими формами отопления, общая эффективность системы нагрева UFH показана ниже.

Тепло концентрируется там, где оно больше всего необходимо для комфорта человека и энергоэффективности.

Особенности и преимущества теплого пола

Система теплого пола Speedfit предлагает потребителю множество преимуществ. К ним относятся:

Установка

Он прост в установке, требует минимальных усилий и обслуживания.

Комфорт

Система использует лучистое тепло, наиболее удобный вид обогрева, обеспечивающий равномерное распределение тепла по всей комнате.

Космос

Эта система ненавязчива и экономит место, что означает, что каждый квадратный метр площади пола и стены может быть полностью использован, что дает свободу при оформлении интерьера.

Шум

По сравнению с радиаторными системами, система UFH работает практически бесшумно.

Здоровье

Уменьшает количество пыли и уменьшает количество клещей домашней пыли.Уменьшение количества горячих поверхностей и острых краев снижает риск ожогов или травм.

Экономика
Системы подпольного отопления

предназначены для работы при более низких температурах, чем радиаторные системы, что делает их особенно подходящими для конденсационных котлов, что приводит к снижению потребления энергии и меньшим потерям тепла из конструкции здания.

Контроль

Системой легко управлять, а небольшая разница температур между полом и воздухом означает, что система фактически саморегулируется.

Окружающая среда

«Полы с подогревом» подходят для использования с наиболее энергоэффективными и экологически чистыми системами отопления, включая конденсационные котлы, солнечные батареи и тепловые насосы.

Проектирование теплого пола

Принципы укладки сплошного пола

Система теплого пола Speedfit предназначена для установки в твердый пол с стяжкой.

Поскольку стяжка находится в непосредственном контакте с трубами отопления, обеспечивается отличная теплопередача, равномерное распределение тепла и меньшие колебания температуры.

Типичная установка состоит из:

  • Напольное покрытие (ковролин, керамическая плитка и др.)
  • Стяжка
  • Трубка Speedfit, прикрепленная скобами к изоляции
  • Изоляция кромок
  • Высококачественная изоляция пола 50 мм
  • Бетонный пол

Изоляция пола является неотъемлемой частью любой установки UFH в сплошном полу.

Speedfit рекомендует получить рекомендации экспертов, чтобы убедиться, что используемые продукты подходят для полов с подогревом и соответствуют действующим нормам.

Для получения помощи, пожалуйста, обратитесь к разделу этого сайта со ссылкой на техническую консультационную службу Speedfit.

Рекомендации по проектированию

Проектирование и расчеты UFH-системы в твердом полу должны проводиться в соответствии с BS EN 1264, а детали, представленные на этом сайте, основаны на этом стандарте.

Существует ряд важных вопросов, связанных с системой теплого пола Speedfit, которые следует рассмотреть перед началом проекта:

  • Источники тепла
  • Расположение коллектора
  • Тепловая мощность и температура пола
  • Стяжки
  • Отделка полов и покрытия
  • Периметр
  • Элементы управления

Они описаны ниже.

Источники тепла

Из-за более низких температур потока, используемых в UFH, обычно 47–62 ° C, можно рассмотреть множество источников тепла, отличных от стандартного настенного котла. К ним относятся солнечная энергия, тепловые насосы или геотермальные системы, и компания Speedfit рекомендует обращаться за конкретными советами к соответствующим производителям. Дополнительные насосы могут повлиять на некоторые котлы - перед установкой проверьте совместимость у производителя котла.

Расположение коллектора

Установка и балансировка системы теплого пола проще, если коллектор расположен ближе к центру здания.Это будет означать, что шлейфы максимально равны.

Тепловая мощность и температура пола

Из-за множества различных методов конструкции пола трудно обеспечить точную тепловую мощность.

Согласно современным стандартам, максимальная мощность любой системы УВГ, уложенной в твердый пол, составляет приблизительно 11 Вт / м² / K, где K - разница между температурой поверхности пола и желаемой комнатной температурой. При этом учитываются медицинские ограничения человека и чувствительность жителей здания к теплу.

Фактически, с системой подогрева пола Speedfit мощность около 100 Вт / м² может быть достигнута при температуре поверхности пола 29 ° C и температуре воздуха 20 ° C. В некоторых случаях можно допустить более высокую температуру поверхности пола, например, в ванных комнатах (33 ° C), редко используемых помещениях или периметральных зонах (35 ° C).

Стяжки

Стяжка является важной и неотъемлемой частью системы UFH и используется для передачи энергии от труб к отапливаемой зоне.Эта тепловая масса, как ее еще называют, будет реагировать на потребность в тепле в зависимости от ее глубины и состава.

Обычно толщина большинства традиционных песчано-цементных стяжек, наносимых вручную, составляет 65–75 мм. Однако при консультировании по конкретному проекту потребуется информация о типе и глубине стяжки, если она известна.

Доступны более современные бетонные стяжки, обеспечивающие преимущества в скорости нанесения и времени отверждения. Также возможно, что глубина стяжки может быть уменьшена, и это улучшит работу системы теплого пола.

Speedfit рекомендует получить рекомендации от поставщика стяжки, чтобы убедиться, что правильные продукты указаны и используются для вашей системы центрального отопления пола.

Для получения помощи, пожалуйста, обратитесь к разделу этого сайта со ссылкой на техническую консультационную службу Speedfit.

Отделка полов и покрытия

Система подогрева полов Speedfit подходит практически для любой отделки пола, включая керамическую плитку, ковролин, винил и ламинат.

Поскольку напольное покрытие по существу является частью системы отопления, тепловое сопротивление или изоляционная способность отделки пола будут влиять на мощность пола. Чем выше сопротивление, тем меньше эффект нагрева и тем больше время нагрева.

Наиболее подходящими покрытиями являются покрытия с низким термическим сопротивлением, обычно обозначаемым как R-значение или TOG.

Рекомендуемое максимальное значение R составляет 0,15 м²K / Вт (1,5 TOG), а в таблице ниже приведены некоторые типичные значения.

Покрытие типа

Подкладка ковровая

Винил

Паркет

Керамическая плитка

Камень

R Стоимость м² К / Вт

0,15

0,022

0,05

0,017

0,011

TOG Стоимость

1.5

0,2

0,5

0,17

0,11

Керамическая плитка для пола
Керамическая плитка

хорошо работает с UFH, поскольку она обеспечивает минимальное сопротивление теплопередаче. Чтобы избежать растрескивания плитки, следует использовать гибкий клей и краевые швы, чтобы принять расширение. Убедитесь, что клей подходит для использования с UFH.

Ковры

Ковролин и подложка имеют более высокий уровень сопротивления теплопередаче.

Избегайте использования войлока, пробок и толстой резиновой прокладки, поскольку их изоляционные свойства снижают тепловую мощность системы.

Если предполагается использование коврового клея, убедитесь, что он подходит для температур до 40 ° C.

Пластиковая / Виниловая плитка

Полы на пластиковой основе также хорошо работают с UFH, так как обычно имеют минимальное сопротивление теплопередаче. Важно, чтобы используемое покрытие и клей были пригодны для использования при температуре до 40 ° C. Это снижает риск размягчения и потери адгезии.

Древесина / деревянные полы

Деревянные напольные покрытия хорошо сочетаются с UFH. Однако, поскольку пол является натуральным материалом, важно следовать рекомендациям производителя пола относительно установки и первого запуска.

Деревянные полы, как правило, должны иметь влажность более 10%, и при укладке на ровный пол стяжка должна быть полностью затвердела перед укладкой покрытия. После отверждения систему следует проработать примерно 2 недели с материалами в зоне перед установкой.Это снижает влажность в помещении и позволяет материалу акклиматизироваться.

Мы советуем получить конкретную информацию от предлагаемого поставщика или производителя покрытия, чтобы оценить пригодность покрытия для теплого пола.

Периметр

При определенных обстоятельствах можно достичь более высоких температур пола и, следовательно, более высокой мощности, чем обычно допустимо.

Это может быть неиспользуемое жилое помещение или место, постоянно обставленное мебелью.Это достигается за счет уменьшения расстояния между трубами примерно до 100 мм по периметру комнаты (примерно до ширины 1 метр).

Например, расстояние между трубами по периметру может быть использовано там, где на внешней стене комнаты много окон, что может привести к более высоким локальным потерям тепла.

Органы управления

Как и для всех систем отопления, для достижения комфортных условий, поддержания экономичной работы и соответствия строительным нормам и британским стандартам требуются соответствующие средства управления.

Системы теплого пола могут использоваться как единственная система отопления или быть связаны с другими приборами, такими как радиаторы.

Существует множество способов управления системой теплого пола, и можно использовать практически любой котел, включая комбинированный и конденсационный. Для конкретных котлов следует обращаться за советом к изготовителю по установке.

Хотя UFH имеет много преимуществ по сравнению с традиционными системами, они не столь отзывчивы. Поскольку они наиболее эффективны при постоянной работе, рекомендуется использовать элементы управления, которые могут «понизить» температуру в помещении на 4–5 ° C в периоды низкой нагрузки, например в ночное время, вместо того, чтобы полностью отключать систему. .

Обычно комнатные термостаты используются для управления исполнительными клапанами на коллекторе Speedfit, которые, в свою очередь, регулируют поток воды в каждом контуре.

Элементы управления можно разделить на 3 основные категории:

1. Регуляторы температуры потока

Если не используется конденсационный котел с низкотемпературным регулированием, для большинства систем теплого пола температура воды из котла, обычно 82 ° C, снижается до требуемой температуры с помощью смесительного клапана.

Более совершенные контроллеры, называемые погодозависимыми компенсаторами, используют внешний датчик и программатор для регулировки расхода и температуры с целью компенсации внешних условий.

Важно иметь устройство для управления котлом и насосом, чтобы температура подачи не превышала безопасные пределы. Насосный агрегат Speedfit оснащен встроенным ограничительным термостатом.

2. Комфортное управление

Комнатные термостаты используются для управления температурой воздуха в помещении или зоне и подключаются к центру управления, чтобы можно было открывать или закрывать отдельные контуры труб и включать или выключать насос / котел по мере необходимости.Комнатами можно управлять индивидуально или зонами из 2-х и более комнат.

Существует широкий выбор комнатных термостатов, подходящих для систем теплого пола. К ним относятся электромеханические, цифровые и программируемые. Модели могут иметь проводное соединение или управляться по радиочастоте.

Все типы элементов управления подходят для подключения к Центру управления Speedfit.

Программируемые комнатные термостаты

обеспечивают полный контроль над системой UFH. Каждую зону или комнату можно настроить в соответствии с собственными требованиями, при этом можно учитывать индивидуальные модели занятости.Эти типы статистики также предлагают возможность использовать режим «возврата» для максимальной эффективности.

Поскольку большинство систем управления работают с питанием 240 В, для управления во влажных помещениях, таких как душ или ванная, мы рекомендуем использовать дистанционный датчик или ведомый датчик из другой комнаты.

3. Блок управления котлом и насосом

Строительные нормы Великобритании требуют наличия связи между системами управления и котлом, чтобы котел не работал, когда от системы не потребовалось тепло.Контроллер Speedfit имеет возможность для этого подключения.

Чтобы обсудить варианты для отдельных проектов, обратитесь в службу технической поддержки Speedfit по телефону 01895 425333.

Руководство по проектированию

Проектирование системы теплого пола Speedfit представляет собой простой процесс, состоящий из 6 основных этапов:

  • Расчет потерь тепла и потребности в тепле
  • Проверить потребность в дополнительном тепле
  • Определить температуру потока воды и расстояние между трубопроводами
  • Определить расположение коллектора
  • Рассчитать необходимое количество контуров
  • План расположения труб
Расчет теплопотерь

Для определения количества тепла, необходимого для каждой комнаты или участка, необходимо выполнить расчет теплопотерь.

Если заказчик не знаком с расчетом, у Института инженеров по обслуживанию зданий (CIBSE) и Ассоциации подрядчиков по отоплению и вентиляции (HVCA) есть документы по этому вопросу.

В некоторых проектах может быть возможно, чтобы инженер Speedfit мог помочь в этом процессе. Пожалуйста, свяжитесь со Службой технических консультаций по телефону 01895 425333 для получения дополнительной информации.

В системе теплого пола потери тепла через первый этаж обычно не учитываются, так как пол будет теплее, чем температура в помещении.

Практически возможны некоторые теплопотери через пол, поэтому при расчете нагрузки котла к общей сумме добавляется 10% запас.

Фактическая тепловая мощность, необходимая для помещения, рассчитывается путем деления потребности в тепле, полученной из расчетов теплопотерь, на общую площадь пола.

В таких местах, как кухня или стационарная арматура, трубопроводы обычно не требуются и должны быть исключены из расчета.

Это генерирует показатель потребности в тепле в ваттах на м², который затем можно использовать в таблицах производительности системы Speedfit при выборе расстояния между трубами и температуры подачи.

Пример:

Согласно чертежам, тепловые потери для комнаты были рассчитаны на уровне 1200 Вт, а площадь пола измерена на уровне 20 м². Следовательно, требуемая производительность системы УВГ составляет:

Потери тепла (Вт) / площадь пола (м²) = требуемая мощность (Вт / м²)

1200 Вт / 20 м² = 60 Вт / м²

Следует отметить, что если расчетная тепловая потеря превышает 100 Вт / м², может потребоваться дополнительное отопление для достижения уровня комфорта.

Это может быть, например, в помещении с высоким уровнем остекления, таком как зимний сад.

Температура потока воды и расстояние между трубками

Насосный агрегат JG, подключенный к коллектору, имеет встроенный пропорциональный смесительный клапан для регулирования температуры воды из первичного источника.

Обычно устанавливается в диапазоне 47–62 ° C в зависимости от требований системы, и температура подачи остается неизменной для каждого контура.

Рассчитав выше требуемую теплопотери, выберите соответствующую таблицу мощности Speedfit в зависимости от используемого напольного покрытия.

Выберите температуру подачи и расстояние между трубопроводами в зависимости от желаемой температуры в помещении и максимальной температуры пола 26 ° - 29 ° C.

Пример: - Сверху минимальное требование к производительности 60 Вт / м² требуется от системы UFH.

Используя Таблицу 1 - Текстильные напольные покрытия, можно определить следующее.

При расходе 55 ° C, комнатной температуре 20 ° C и расстоянии между трубопроводами 200 мм мощность системы составляет 80 Вт / м² при температуре пола 27 ° C, что находится в допустимых пределах производительности.(Нормально, чтобы расстояние между центрами труб в жилых комнатах не превышало 200 мм, и температура пола не должна превышать 29 ° C.)

Если указаны покрытия, не упомянутые в таблицах, возможно, потребуется выполнить специальные расчеты. Детали сопротивления для конкретных напольных покрытий следует получить у производителя до установки системы UFH.

В некоторых проектах может быть возможно, чтобы инженер Speedfit мог помочь в этом процессе.Пожалуйста, свяжитесь со Службой технических консультаций по телефону 01895 425333 для получения дополнительной информации.

Положение коллектора и длина контура

Уникальный коллектор Speedfit доступен в конфигурации с 4, 8 или 12 портами, а труба Speedfit UFH поставляется в бухтах длиной 120 и 150 метров, чтобы обеспечить соединения потока и возврата к коллектору.

Выбор конфигурации коллектора будет зависеть от количества необходимых вам контуров и температурных зон.Например, вы можете захотеть установить другую температуру на кухне и в гостиной.

Количество контуров в каждой зоне будет зависеть от размера зоны и центров труб, выбранных из таблиц выходных данных Speedfit.

Во избежание чрезмерных падений давления в трубопроводе максимальная длина петли ограничена 100 метрами, а необходимое количество труб можно рассчитать по таблице ниже:

Требования к трубам UFH Speedfit

Расстояние (мм)

Макс.площадь м / м²

Макс.контур м

100

8.5

100

200

5

100

Пример: Если помещение площадью 18 кв.м необходимо отапливать на расстоянии 200 мм от центра трубы, длина, если требуется, будет примерно 90 м. Однако, если расстояние до коллектора составляет 11 м, что требует дополнительных 22 м, тогда потребуется 2 петли (например, 90 м + 22 м = 112 м).

Определив количество петель и, следовательно, конфигурацию коллектора, можно спланировать расположение труб.Длина петли контура должна включать хвосты для подключения к коллектору.

Схема расположения труб
Компоновка трубопроводов

UFH основана на двух основных соображениях, которые необходимо эффективно сбалансировать.

Труба должна быть проложена таким образом, чтобы обеспечить равномерное распределение тепла и относительно равномерную температуру поверхности по всей площади.

Трубы следует прокладывать непрерывно, соединения не должны выполняться в зоне разравнивания.

Компоновка должна учитывать повышенную теплоотдачу от более холодных внешних поверхностей.

Петли трубопровода могут быть выложены по разным схемам в зависимости от характера конкретного проекта, с учетом внешних стен и окон, где будут наибольшие теплопотери.

Оптимальная схема расположения труб обычно достигается путем смешивания подающей и обратной труб так, чтобы труба с самой высокой температурой подачи находилась рядом с трубой с самой низкой температурой обратной линии. Это обычно называют компоновкой с обратным возвратом или встречной спиралью.

Какая бы схема ни использовалась, трубы не должны пересекаться в полу и должны идти к соответствующему отверстию на коллекторе.Поэтому перед установкой рекомендуется подготовить схему расположения труб.

Некоторые шаблоны компоновки упоминаются по имени:

  • Одиночный змеевик
  • Двойной серпантин
  • Тройной змеевик
  • Противоточная спираль

На практике схемы расположения труб можно комбинировать или смешивать, чтобы удовлетворить потребности в тепле.

Примеры этих паттернов можно увидеть ниже:

Змеиные узоры

Серпантинные узоры позволяют самой горячей воде ограничивать внешний периметр (области с наибольшими потерями тепла).Температура воды выше всего у самых холодных стен и будет уменьшаться по мере того, как она течет по трубе к центру комнаты.

Противоток

Противоточные схемы отличаются от змеевиков тем, что подающая и обратная трубы расположены рядом друг с другом, создавая между ними среднюю температуру.

Зоны подключения

В областях, близких к коллектору, таких как холл, несколько труб могут находиться в непосредственной близости друг от друга, поскольку потоки и возврат в контуре встречаются.

Это будет способствовать увеличению потребности помещения в тепле. Обычно эти трубы либо изолируют, либо используют трубы для обогрева соответствующей области.

Следовательно, продумайте и спроектируйте эти области после того, как станут известны все другие помещения, контуры и коллекторы.

Потеря давления и режим работы насоса

При соблюдении ограничений по длине и площади контура, общая потеря давления в системе находится в пределах возможностей насоса, поставляемого с манифольдом Speedfit.

Технические характеристики Speedfit
  • Барьерная труба Speedfit B-PEX, изготовленная в соответствии с BS7291, с диффузионным слоем кислорода, который соответствует требованиям DIN 4725 по проницаемости для кислорода.
  • Размеры трубы 15 мм x 120 м Барьерная труба Speedfit B-PEX.
  • Труба рассчитана на давление 3 бар при 92 ° C.
  • Регулируемый диапазон смесительного клапана 47 ° - 62 ° C.
Выходные таблицы

Следующие 4 таблицы предназначены для помощи в спецификации системы UFH и показывают различные наборы данных в зависимости от отделки пола в соответствии с определением BSEN 1264.

Данные приведены только для ознакомления и основаны на конкретных данных.

Если вам нужна дополнительная информация или необходимо обсудить конкретный проект, обратитесь в службу технической поддержки Speedfit по телефону 01895 425333.

Таблица 1 Текстильные напольные покрытия

Максимальная тепловая мощность, достижимая при настройках температуры потока (Вт / м²)

Комната
Температура
(° C)

Труба
Центры
(мм)

Расход
Температура
47 ° C

Пол
Температура
(° C)

Расход
Температура
50 ° C

Пол
Температура
(° C)

Расход
Температура
55 ° C

Пол
Температура
(° C)

18

100

77

25

86

26

102

27

200

64

24

72

24

85

26

20

100

70

26

80

27

95

29

200

59

25

67

26

80

27

22

100

64

28

74

29

89

30

200

54

27

61

28

74

29

Банкноты

При перепаде температур между подающей и обратной линиями на 8 ° C
Стяжка толщиной 45 мм над концом трубы
Типичное тепловое сопротивление = 0.15
Таблица 2 Плитка / твердая древесина

Максимальная тепловая мощность, достижимая при настройках температуры потока (Вт / м²)

Комната
Температура
(° C)

Труба
Центры
(мм)

Расход
Температура
47 ° C

Пол
Температура
(° C)

Расход
Температура
50 ° C

Пол
Температура
(° C)

Расход
Температура
55 ° C

Пол
Температура
(° C)

18

100

92

26

104

27

123

29

200

75

25

84

26

100

27

20

100

85

28

86

28

115

30

200

69

26

76

27

93

28

22

100

77

29

89

30

108

32

200

63

28

72

28

87

30

Банкноты

При перепаде температур между подающей и обратной линиями на 8 ° C
Стяжка толщиной 45 мм над концом трубы
Типичное тепловое сопротивление = 0.10
Стол 3 Деревянная планка / Толстый линолеум

Максимальная тепловая мощность, достижимая при настройках температуры потока (Вт / м²)

Комната
Температура
(° C)

Труба
Центры
(мм)

Расход
Температура
47 ° C

Пол
Температура
(° C)

Расход
Температура
50 ° C

Пол
Температура
(° C)

Расход
Температура
55 ° C

Пол
Температура
(° C)

18

100

117

28

131

30

.

Смотрите также