Температура плавления металлов


Таблица температуры плавления (tпл) металлов и сплавов при нормальном атмосферном давлении

Металл или сплав tпл. С
Алюминий 660,4
Вольфрам 3420
Германий 937
Дуралюмин ~650
Железо 1539
Золото 1064?4
Инвар 1425
Иридий 2447
Калий 63,6
Карбиды гафния 3890
ниобия 3760
титана 3150
циркония 3530
Константин ~1260
Кремний 1415
Латунь ~1000
Легкоплавкий сплав 60,5
Магний 650
Медь 1084,5
Натрий 97,8
Нейзильбер ~1100
Никель 1455
Нихром ~1400
Олово 231,9
Осмий 3030
Платина 17772
Ртуть -
38,9
Свинец 327,4
Серебро 961,9
Сталь 1300-1500
Фехраль ~1460
Цезий 28,4
Цинк 419,5
Чугун 1100-1300

Вернуться в раздел аналитики

Запись опубликована автором admin в рубрике Полезные материалы. Добавьте в закладки постоянную ссылку.

Температура плавления металлов, сплавов, фосфора и кремния, в °C и °F

Алюминий (Al) / Aluminum 660 1220
Алюминиевые сплавы / Aluminum Alloy 463 - 671 865 - 1240
Баббит = Babbitt 249 480
Бериллий (Be) = Beryllium 1285 2345
Бронза алюминиевая = Aluminum Bronze 1027 - 1038 1881 - 1900
Бронза бериллиевая, бериллиевая бронза = Beryllium Copper 865 - 955 1587 - 1750
Бронза марганцовистая = Manganese bronze 865 - 890 1590 - 1630
Ванадий (V), Vanadium 1900 3450
Висмут (Bi) = Bismuth 271.4 520.5
Вольфрам (W), Tungsten 3400 6150
Железо ковкое (Fe)  = Carbon Steel 1482 - 1593 2700 - 2900
Золото (Au) чистое 999 пробы  100% золото = Gold 24K Pure 1063 1945
Инконель, жаропрочный никелехромовый сплав = Inconel 1390 - 1425 2540 - 2600
Инколой, жаропрочный никелехромовый сплав = Incoloy 1390 - 1425 2540 - 2600
Иридий (Ir), Iridium 2450 4440
Кадмий (Cd) = Cadmium 321 610
Калий (K) = Potassium 63.3 146
Кобальт (Co) = Cobalt 1495 2723
Кремний (Si) = Silicon 1411 2572
Латунь желтая = Brass, Yellow 905-932 1660-1710
Латунь морская = Морская латунь (29-30% Zn, 70% Cu-1% Sn и 0,02-0,05% As) = Admiralty Brass 900 - 940 1650 - 1720
Латунь красная = Brass, Red 990 - 1025 1810 - 1880
Медь (Cu) = Copper 1084 1983
Мельхиор, купроникель = Cupronickel 1170 - 1240 2140 - 2260
Магний (Mg), Magnesium 650 1200
Магниевые сплавы = Magnesium Alloy 349 - 649 660 - 1200
Марганец (Mn), Manganese 1244 2271
Молибден (Mo), Molybdenum 2620 4750
Монель (до 67 % никеля и до 38 % меди) = Monel 1300 - 1350 2370 - 2460
Натрий (Na) = Sodium 97.83 208
Никель (Ni), Nickel 1453 2647
Ниобий (Nb), Niobium (Columbium) 2470 4473
Олово (Sn), Tin 232 449.4
Осмий (Os), Osmium 3025 5477
Палладий (Pd), Palladium 1555 2831
Платина (Pt),Platinum 1770 3220
Плутоний (Pu), Plutonium 640 1180
Рений (Re), Rhenium 3186 5767
Родий (Rh) = Rhodium 1965 3569
Ртуть (Hg) = Mercury -38.86 -37.95
Рутений (Ru) = Ruthenium 2482 4500
Селен (Se) = Selenium 217 423
Cеребро 900 пробы = Coin Silver 879 1615
Серебро (Ar) чистое = Pure Silver 961 1761
Cеребро 925 пробы = Sterling Silver 893 1640
Свинец (Pb), Lead 327.5 621
Сталь углеродистая = Carbon Steel 1425 - 1540 2600 - 2800
Сталь нержавеющая = Stainless Steel 1510 2750
Сурьма (Sb) = Antimony 630 1170
Тантал (Ta) = Tantalum 2980 5400
Титан (Ti), Titanium 1670 3040
Торий (Th), Thorium 1750 3180
Уран (U), Uranium 1132 2070
Фосфор (P), Phosphorus 44 111
Хастелой С, Hastelloy C (54,5-59,5% Ni; 15-19% Mo; 0,04-0,15% C; 4-7% Fe; 13-16% Cr; 3,5-5,5% W) 1320 - 1350 2410 - 2460
Хром (Cr) = Chromium 1860 3380
Цинк (Zn), Zinc 419.5 787
Цирконий (Zr), Zirconium 1854 3369
Чугун серый = Grey Cast Iron 1127 - 1204 2060 - 2200
Чугун Ковкий, Ductile Iron 1149 2100

Температура плавления сплавов - Энциклопедия по машиностроению XXL

В соответствии с этим очевидно, что чем выше температура плавления сплава (которая в первую очередь определяет силы межатомных связей), тем больше должна быть жаропрочность сплава.  [c.460]

Маркируются легкоплавкие металлы буквой Л и цифрой, показывающей температуру плавления сплава (она постоянна, поскольку легкоплавкие сплавы являются сплавами эвтектического типа).  [c.627]

Сварка трением. Ширина зоны нагрева от внутреннего источника энергии при сварке трением значительно ниже, чем при контактной сварке оплавлением. Кроме того, процесс формирования шва обычно протекает при температурах, близких к температуре плавления сплава, но не превышающих ее, т. е, без затрат на скрытую теплоту плавления. При общей ширине пластической зоны формирования соединения около 5 мм минимальная удельная энергия составит = 2,7-660-0,5 = 900 Дж/см" = 9 Дж/мм .  [c.29]


Платина — родий. Платина неограниченно растворима в родии. Температуры плавления сплавов приведены на фиг. 18.   [c.408]

Платина — палладий. Платина и палладий неограниченно растворимы друг в друге. Температуры плавления сплавов не изучены. Свойства сплавов при ведены на фиг. 19. Все сплавы мягки, легко куются, прокатываются и протягиваются в проволоку.  [c.411]

Для чистых металлов установлена зависимость между скоростью диффузии и температурой плавления. В большинстве случаев, хотя только качественно, эта закономерность наблюдается в твердых растворах. С повышением концентрации легирующего элемента, понижающего температуру плавления сплава, диффузия последнего ускоряется, поскольку температура опыта, остающаяся постоянной, приближается к линии солидуса. Если же легирующий элемент повышает температуру плавления сплава, то с увеличением его концентрации диффузия замедляется. Хо-  [c.24]

Сплавы Серебро — кадмий образуют ограниченную область твердых растворов. Применяемые для контактов сплавы лежат в области -твердых растворов, т. е. это сплавы, богатые серебром. Добавки кадмия понижают температуру плавления, но повышают удельное электрическое сопротивление. Сплавы обладают весьма ценным свойством хорошо работать в дуговом режиме. Это обусловливается свойствами окиси кадмия (образующейся при нагреве сплава контактной дугой), которая при 900—1000 °С разлагается со взрывом, производя дугогасящее действие без нарушения контактной проводимости. Недостатком серебряно-кадмиевых контактов является значительная свариваемость и сплавление нх при больших токах из-за низкой температуры плавления сплавов. Этот недостаток устраняется при изготовлении контактов методом металлокерамики.  [c.298]

К данной группе условно отнесены металлы с температурой плавления не выше 700—850° С. В табл. 41 приведены свойства этих чистых металлов, а в табл. 42 — особо легкоплавких сплавов на основе этих металлов с температурой плавления не выше 152° С. Легкоплавкие сплавы на основе висмута плавятся при температуре в пределах 130°С, а температура плавления сплавов с добавкой ртути — около 43° С.  [c.165]

С повышением содержания углерода до 3% температура плавления сплава, содержащего 30—35% Сг, понижается до 1300° С.  [c.201]

По данным работы [28], температура плавления сплава, содержащего 15% кремния, составляет приблизительно 1195° С. Сплав затвердевает в небольшом интервале  [c.224]

Температура плавления сплавов определяется содержанием хрома и углерода. С повышением содержания хрома температура плавления неуклонно возрастает, в то время, как повышение содержания углерода понижает температуру плавления сплава.  [c.226]


Температура плавления сплавов  [c.184]

Содержание Bi в большинстве легкоплавких сплавов составляет от 23 до 53%, причем температура плавления сплава уменьшается с увеличением содержания Bi и количества легкоплавких структурных составляющих, появляющихся в сплаве, благодаря присутствию Sn,  [c.223]

Зависимость температуры кипения от давления для различных веществ дана в табл. 6 и 7, в табл. 8 приведены температуры плавления сплавов, в табл. 9 — огнеупорных материалов.  [c.66]

Температура плавления сплавов [25]  [c.71]

Процесс металлизации (плазменного напыления) протекает в четыре фазы расплавление распыляемого сплава отрыв и распыление расплавленного сплава полет частиц распыляемого сплава удар частиц об упрочняемую поверхность. В качестве упрочняющих материалов применялись хромоникелевые сплавы, содержащие 0,2—1,0% С 1—5% Si 10— 18% Сг 1,5—5% В. Присадки бора и кремния значительно снижают температуру плавления сплава, а также препятствуют окислительному процессу при плазменном напылении.  [c.255]

Изменение температуры плавления сплавов при малых добавках других металлов. Если жидкий сплав содержит большое количество растворителя 1 и малое количество растворенного вещества 2, то законы идеальных разбавленных растворов (см. гл. I, п. 8) применимы к этому сплаву в той же форме, как и для водных растворов.  [c.83]

Литейный сплав Вес отливки в Г Температура плавления сплава в С Материал металлической формы Стойкость формы (количество заливок в тыс. шт.)  [c.181]

Количество отливок, которое можно получить в металлической форме с сохранением их размеров в заданных пределах, характеризует ее стойкость, зависящую в первую очередь от температуры плавления сплава (с повышением температуры стойкость понижается).  [c.66]

Ползучестью, или крипом, называют свойство металла непрерывно и медленно пластически деформироваться, т. е. получать непрерывно нарастающую остаточную деформацию, при неизменном напряжении. Это неизменное в процессе ползучести напряжение обычно значительно ниже предела текучести при той же температуре. В металлах, применяемых для изготовления основных деталей паровых турбин, процесс ползучести имеет значение лишь при высоких температурах. Для каждой стали эта температура индивидуальна. Несмотря на относительно высокую температуру плавления, сплавы титана обнаруживают склонность к ползучести даже при комнатной температуре [24, 117].  [c.14]

Температура плавления сплава, С  [c.399]

Температура плавления сплава,  [c.163]

Центральные каналы пробок заливают под особым контролем легкоплавким сплавом. Наиболее употребительные сплавы из олова (25%) и свинца (75%) или из сурьмы (—13%) и свинца (—87 %) температура плавления сплава должна быть немного выше темпера-туры кипения воды в котле.   [c.106]

При температуре 20° С нитрит-нитратная смесь (ОС-4) представляет собой сплав белого цвета. Температура плавления сплава, составленного из химически чистых солей, равна 142,2° С. Небольшая примесь влага значительно снижает температуру его плавления, что видно из кривой растворимости (рис. 2-5), экспериментально полученной нами при работе со сплавом, составленным из химически чистых солей. Это свойство сплава может  [c.69]

Сплав ЦАМ 10-5 расплавляют в тиглях или ковшах, нагреваемых в горне. Температура плавления сплава около 400 °С. Перед заливкой металл очищают в тигле от шлака. При заливке необходимо предусмотреть припуск на усадку.  [c.210]

Висмут и кадмий понижают температуру плавления сплава и способствуют получению более твердых и коррозионно-стойких припоев (табл. 62).  [c.92]

В последних двух формулах значения А и.к рекомендуется выбирать в тех же пределах, что и в случае для сталей. Значения для оценки влияния легирующих элементов в сталях, в никелевых и титановых сплавах приведены в табл. 1. Знак минус указан в тех случаях, когда легирующий элемент повышает температуру плавления сплава, в отличие от остальных, когда легирующие элементы снижают  [c.324]

Помимо чрезвычайно низкой температуры плавления, сплавы висмута часто отличаются необычными расширением и сжатием. Прн отливке металла  [c.127]

Легкоплавкие сплавы. Разработано большое количество легкоплавких сплавов, содержащих индий 161. Например, при добавлении индия к сплаву Вуда температура плавления сплава понижается на 1,45° на каждый процент добавленного индия. Самую низкую температуру плавления (47°) имеет сплав, содержащий 19,1 96 индия. Эвтектический сплав, содержащий 24% индия и 769 о галлия, плавится при 16 и, следовательно, при комнатной температуре находится в жидком состоянии.  [c.240]


Вблизи температуры плавления сплава находится температура, при которой наблюдается потеря пластичности. Здесь же находится область пережога стали, связанного с оплавлением и окислением границ зерен, поэтому штамповать в этой области нельзя. Некного ниже находится температура перегрева сплава, который характери-  [c.39]

R качестве мягких припоев применяют сплавы легкоплавких металлов свинца, олова, висмута, кадмия, чаще всего сплавы свинца и олова. Наиболее легкоплавким сплавом в системе РЬ—So является эвтектический, содержащий 62% Sn и 38% РЬ (рис. 456) (приблизительно % Sn и 7з РЬ). В производстве его часто называют третником. Температура плавления сплава 183°С. Стандартное обозначение сплава ПОС-61 (припой оловянносвинцовый, 617о Sn). Припои ПОС-40 и ПОС-30 содержат, следовательно, 40 и 30% Sn и имеют, как это можно определить по диаграмме, приведенной на рис. 456, более высокую температуру плавления.  [c.623]

При способах сварки плавлением, особенно с использованием дуги, происходит интенсивное перемешивание жидкого металла как вследствие его движения из передней части ванны в заднюю, так и под влиянием других воздействий источника теплоты на жидкий металл. Происходит интенсивный теплообмен между отдельными порциями различно нагретого жидкого металла, а также вследствие теплоотвода в твердый металл. По этой причине энергетическое состояние ванны целесообразно характеризовать не только возможными максимальными и минимальными температурами, но и средней температурой жидкого металла. Она зависит от режима сварки (тока, напряжения, скорости сварки), характера подачи присадочного металла, устойчивости дуги и положения ее активного пятна. Например, средняя температура ванны при аргонно-дуговой сварке алюминиевого сплава АМгб может изменяться от 920 до 1050 К при возрастании тока от 300 до 450 А при 14 В и от 1070 до 1200 К при и =8 В, в то время как температура плавления сплава АМгб составляет около 890 К.  [c.231]

Признаком протекания процесса образования уплотненной трехмерноупорядоченной объемной части структурных элементов кристаллической системы, происходящего за счет рекристаллизации вещества во фрактально расположенных порах, может служить начало резкой усадки твердых тел при некотором их охлаждении ниже температуры кристаллизации (около 2/3 от температуры плавления сплава)  [c.97]

Палладий—иридий. Сплапы системы Pd—Гг образуют непрерывный ряд твердых растворов. Температуры плавления сплавов не изучены. Свойства сплавов приведены на фиг. 33.  [c.417]

Кобальтовые сплавы. Благодаря высокой точке Кюри кобальта (1120° С) введение его в железо-никелевый сплав сопровождается повышением температуры 6. Так у сплава Ni (30%), Сг (8%), Со (25%) и Fe (ост.) значение G = 380° С. Повышенное значение ТК1 = 9,85 х X 10" Мград (в интервале 20—200° С) соответствует условиям получения вводов для легкоплавких стекол температура плавления сплава 1500° С. Сплав типа ковар (29% Ni, 18% Со и 53% Fe) имеет низкое значение ТЮ = 4,8-lO- Иград, необходимое для совмеш,ения с тугоплавкими стеклами и керамикой обычно применяют ковар у-модифи-кащ и с гранецентрированной кубической решеткой. Температура плавления ковара 450° С, точка Кюри 0 = 453° С, значение р = = 0,49 ом Сплав легко сваривается, паяется и устойчив к дей-  [c.303]

Построение полных диаграмм состояния даже в случае относительно простых тройных систем требует выполнения сложного и трудоемкого эксперимента. Трудности особенно велики при изучении тугоплавких систем, когда температуры плавления сплавов достигают 3000° С и более. Из-за методических трудностей динамические методы (ДТА, изучение зависимостей температура — свойство) выше 2000° С используются сравнительно мало. В то же время, как оказалось, для углеродсодержащих систем (в частности, с молибденом и вольфрамом), как и для металлических, характерны быстропротекающиевысокотемпературные превращения типа мар-тенситных. В этом случае использование метода отжига и закалок для исследования фазовых равновесий при высоких температурах малоэффективно. С другой стороны, даже после длительных отжигов при относительно невысоких температурах (состояния термодинамического равновесия. Для правильной интерпретации экспериментальных данных, учитывая столь сложное поведение сплавов, особенно важно знание общих закономерностей взаимодействия компонентов в рассматриваемых системах. Поэтому, наряду с обстоятельными многолетними исследованиями с целью построения полных диаграмм состояния [1, 9, 121, целесообразно выполнять работы, цель которых — сравнительное исследование немногих сплавов многих систем в идентичных условиях, выявление на этой основе общих черт в поведении систем-аналогов [3, 12] и использование полученных результатов при оценке собственных экспериментальных и литературных данных и при планировании новых исследований [4].  [c.161]

П.штина — вольфрам. Вольфрам значительно повышает температуру плавления сплава и его твердость. Для контактов и свечей зажигания применяют сплавы с 4—5 % W, имеющие высокое удельное электрическое сопротивление и твердость. Они достаточно пластичны — обрабатываются пластически в горячем и холодном состоянии (поддаются ковке, прокатыванию, волочению на холоде) стойки к атмосферной коррозии склонны к иглообразованию имеют минимальный ток дуги несколько меньший, чем у платины.  [c.302]

Сплавы для металлических моделей, [ля тонкостенных ручных и машинных сделай применяется серый чугун арки СЧ 15-32 по ГОСТ 1412-54. Хи-ический состав чугуна (в %) углерода, 5—3,8, кремния 2,4—2,6, марганца, 7—0,9, фосфора 0,3—0,6, серы — до, 1. Для высоких, подвергающихся альному износу моделей машинной ормовки рекомендуется алюминиево-едистый сплав марки АЛ-12 по ГОСТ 385-. S3. Температура плавления сплава 10° С, удельный вес 2,9, усадка 1,2%. ля ручных и машинных моделей всех азмеров пригоден сплав марки АЛ-13 D ГОСТ 2685-.53. Температура плавле-ля 630° С, удельный вес 2,8, усадка 1%. ля отливки моделей по изделию при-еняется безусадочный и легкоплавкий сдельный сплав состава свинца 45%, дсмута 55%.  [c.21]


Существующие технические условия на металлический калий технический ТУ2010-55 допускают примесь натрия до 5% Для первого сорта и до 7% для второго, в то время как другие примеси составляют доли процентов. Такое содержание натрия в металле может существенно изменить его теплофизические свойства, поэтому важно знать точное содержание примеси натрия. Способы химического определения процентного содержания натрия громоздки /и трудоемки. Проще это определять по температуре плавления или затвердевания исследуемого металла. Температура ллавления чистого калия определялась многими исследователями, и ее лаиболее вероятное значение равно 63,6 0,Г С [1]. Из фазовой диаграммы калий-натриевых сплавов видно, что температура плавления сплава линейно падает в зависимости от содержания натрия (в пределах до 10%). Каждый лроцент иримеси натрия понижает точку плавления металла на 3,6° С [2] следовательно, определив температуру  [c.112]

Минимальная температура плавления сплава 80 % Аи, 20 % Си 889 °С (табл. 35). Введение в состав меднозолотых припоев серебра (табл. 36), с которым золото образует также ряд твердых растворов, позволяет несколько снизить температуру их плавления. Эти припои нашли использование при пайке молибдена и соединения графита с металлами.  [c.77]

В процессе кристаллизации обычно образуются кристаллы твердого раствора дендритного типа, поэтому оси первого порядка, возникающие в начальный момент кристаллизации, обогащены более тугоплавким компонентом В. Периферийные слои кристалла и межосные пространства, кристаллизующиеся в последнюю очередь, будут обогащены компонентом А, понижающим температуру плавления сплава, и их состав близок к концентрации, соответствующей исходной концентрации сплава. Такую неоднородность состава сплава внутри отдельных кристаллов называют внутри-кристаллитной, или дендритной, ликвацией Meti больше разность температур между солидусом и ликвидусом, тем больше дифференциация по составу между жидкой и твердой фазами и тем сильнее проявляется этот вид ликвации. Быстрое охлаждение способствует развитию дендритной ликвации. Вследствие разной травимости участков твердого раствора, имеющих неодинаковый состав,  [c.55]

В первом случае эффективными оказываются те химические элементы, которые способны в наибольшей степени увеличивать прочность межатомных связей и тем самым снижать скорость диффузии и самодиффузии атомов в сплаве и повышать его модуль упругости. Легирующие элементы не должны также заметно снижать температуру плавления сплава. Для каждого металла-основы можно подобрать сравнительно немного элементов, обладающих указанными свойствами. К таким элементам относятся гпаеным образом те, у которых атомы по своей химической природе и по размерам резко отличаются от атомов металла-основы, являющегося растворителем. Как правило, используют легирование не одним, а группой элементов, между которыми возникают дополнительные химические связи. Поэтому современные жаропрочные сплавы представляют собой чрезвычайно сложные композиции, содержащие металл-основу и две-три или более легирующие добавки. Однако растворенные атомы легирующих элементов - сравнительно слабое препятствие движению дислокаций в металлической основе, в связи с чем эффект упрочнения наблюдается только до температуры 0,6 - 0,7 Т ц.  [c.161]

Фирмой Филко корпорейшн разработаны два процесса для электроосаждения сплавов кадмия с индием из расплава. В одном из процессов используется расплавленная ванна электролита, состоящего из хлоридов кадмия, индия и цинка [65, 661, в другом процессе — ванна, состоящая из раствора хлоридов кадмия, индия и аммония в глицерине. Электролитическое осаждение эвтектического сплава (75% индия) происходит при температуре, превышающей температуру плавления сплава [141.  [c.236]


Расчет температуры плавления нативных и модифицированных комплексов днк при различных концентрациях катионов металлов с помощью расширенной модели конденсации противоионов

 

A new model describing the influence of ionic strength on thermal stability of DNA comlexes of oligonucleotides is proposed. This model assumes that binding of cations with DNA polyanions influences solely the entropy of hybridization and has a saturating mode. The efficacy of counterion binding with single- and double-stranded DNA is different, and the number of cations which bind additionally with the oligonucleotide at duplex formation depends on bulk cation concentration. Analytical equations describing the influence of cation concentration on melting temperature of DNA-duplexes as function of the length of oligonucleotide, its GC-composition and presence of the modification (non-nucleotide insert) were obtained. The values of melting temperature ( T m ) and thermodynamic parameters ( ∆ H o , ∆ S o ) characterizing the hybridization of both native and «bridged» oligonucleotides (bearing non-nucleotide insert on the basis of diethylene glycol phosphodiester) with DNA in various concentrations of NaCl (0,01÷1 М) were obtained using the UV-melting technique. Based on both the data obtained and presented in literature the database (695 data sets) characterizing the influence of ionic strength on the thermal stability of oligonucleotide complexes of various structure is developed. The database analysis allows us to obtain the values of the equilibrium binding constants for condensation of caions on DNA and the number of ions required for saturation of a discrete binding site. The proposed enhanced model of cation condensation utilizing unified thermodynamic increments of dsDNA formation allows us to calculate melting temperatures of DNA-duplexes in the wide range of ionic strength ([Na+] = 0,01÷1 М) with high accuracy.

 

Предложена новая модель, описывающая зависимость стабильности ДНК-комплексов, на основе олигонуклеотидов от ионной силы раствора. Модель предполагает, что связывание катионов с ДНК-полианионом сопряжено исключительно с изменением энтропии системы и имеет насыщающий характер. Эффективность связывания противоионов с одно- и двухцепочечным состояниями ДНК различна, и количество противоионов, дополнительно связывающихся с олигонуклеотидами при их комплексообразовании, зависит от концентрации катионов в растворе. Получены аналитические зависимости, описывающие влияние концентрации катионов натрия на температуру плавления ДНК-дуплексов в зависимости от их длины, GC-состава и наличия модификации (ненуклеотидной вставки). Методом термической денатурации, при различных концентрациях NaCl (0,01÷1 М), определены температуры плавления ( T пл ) и термодинамические параметры комплексообразования ( ∆ H o , ∆ S o ) нативных и «мостиковых», несущих вставку на основе фосфодиэфира диэтиленгликоля, олигонуклеотидов с ДНК. На основании полученных нами и представленных в литературе величин создана база данных (685 наборов данных), характеризующая изменения термической стабильности олигонуклеотидных комплексов при варьировании их структуры и ионной силы раствора. Анализ базы данных позволил определить величины равновесных констант ассоциации противоионов с ДНК и количество противоионов, необходимое для насыщения отдельных сайтов связывания. Показано, что в рамках предложенной нами расширенной модели конденсации противоионов при использовании унифицированных термодинамических параметров образования элементов дцДНК возможно с хорошей точностью рассчитывать T пл ДНК-дуплексов для широкого диапазона ионной силы раствора ([Na+] = 0,01÷1 М).

 

Температура плавления и кипения различных веществ

Вещество

Температуры плавления и кипения, °С

Ag

пл. 962, кип. 2170

Ag2O

разл. > 160

Al

пл. 660, кип. 2500

Al2O3

пл. 2053, кип. > 3000

As

возг. 615, пл. 817

AsH3

пл.- 117, кип.- 62

At

пл. 244, кип. 309

Au

пл. 1064, кип. 2947

B

пл. 2075, кип. 3700

B2O3

пл. 450, кип. ок. 2000

Ba

пл. 727, кип. ок. 1860

BaO

пл. ок. 2020

Be

пл. 1287, кип. 2507

BeO

пл. 2580, кип. 4260

Bi

пл. 271, кип. 1564

Bi2O3

пл. 825, кип. 1890

C (графит)

пл. 4800 [см. примечание]

C (алмаз)

1800 ® C (графит)

CH4

пл.- 182, кип.- 162

CO

пл.- 205, кип.- 192

CO2

возг. - 78

Ca

пл. 842, кип. 1495

CaO

пл. ок. 2614, кип. 2850

Cd

пл. 321, кип. 767

CdO

возг. ок. 900, разл.

Cl2

пл.- 101, кип.- 34

ClO2

пл.- 60, кип. +11

Cl2O

пл.- 116, кип. +2

Cl2O6

пл. 4, разл. > 20

Cl2O7

пл.- 90, кип. +83

Сo

пл. 1494, кип. 2960

Cr

пл. 1890, кип. 2680

Cr2O3

пл. 2340, кип. 3000

Cs

пл. 29, кип. 668

Cu

пл. 1085, кип. 2540

CuO

разл. 1026

Cu2O

пл. 1240, кип. 1800

F2

пл.- 220, кип.- 188

Fe

пл. 1539, кип. ок. 3200

FeO

пл. 1368

Fe2O3

разл. 1390

Fr

пл. 21, кип. 660

Ga

пл. 30, кип. 2403

Ga2O3

пл. ок. 1725

Ge

пл. 937, кип. ок. 2850

GeH4

пл.- 166, кип.- 89

H2

пл.- 259, кип.- 253

HBr

пл.- 87, кип.- 67

HCl

пл.- 114, кип.- 85

HF

пл.- 84, кип. +20

HI

пл.- 51, кип.- 35

HN3

пл.- 80, кип. +36

HNO3

пл.- 42, кип. +83, разл.

H2O

пл. 0, кип. 100

H2O2

пл.- 0,4, разл. +150

H(PH2O2)

пл. 27, разл. 140

H2(PHO3)

пл. 74, разл. 200

H3PO4

пл. 42, разл. 150

H4P2O7

пл. 61, разл. 300

H2S

пл.- 86, кип.- 60

H2SO4

пл. 10, кип. 296, разл.

H2Se

пл.- 66, кип.- 42

H2SeO3

пл. и разл. 70

H2SeO4

пл. 62

H2Te

пл.- 51, кип.- 2, разл.

H2TeO3

40 ® TeO2

H6TeO6

пл. 136, 220 ® TeO3

Hg

пл.- 39, кип. +357

HgO

разл. > 400

I2

пл. 114, кип. 184

I2O5

разл. 275-350

In

пл. 157, кип. 2024

In2O3

пл. 1910, кип. ок. 3300

K

пл. 64, кип. 760

Li

пл. 180, кип. 1337

Mg

пл. 648, кип. 1095

MgO

пл. 2825, кип. 3600

Mn

пл. 1245, кип. 2080

MnO

пл. 1780

MnO2

разл. > 535

Mn2O3

940 ® (MnIIMn2III)O4

Mn2O7

пл. 6, разл. > 55

Mo

пл. 2620, кип. 4630

N2

пл.- 210, кип.- 196

NH3

пл.- 78, кип.- 33

N2H4

пл. 2, кип. 114

NH2OH

пл. 32, разл. > 100

NO

пл.- 164, кип.- 152

NO2

< 21 ® N2O4

N2O

пл.- 91, кип.- 89

N2O3

кип.- 40, разл. > +5

N2O4

пл.- 11, кип. 21, разл.

N2O5

пл. 41, разл.

Na

пл. 98, кип. 886

Ni

пл. 1455, кип. ок. 2900

NiO

пл. 1955

O2

пл.- 219, кип.- 183

O3

пл.- 193, кип.- 112

OF2

пл.- 224, кип.- 145

P (красный)

возг. 416

P4 (белый)

пл. 44, кип. 287

PH3

пл.- 134, кип.- 87

P4O6

пл. 24, кип. 175

P4O10

возг. 359, пл. 422

Pb

пл. 328, кип. 1745

PbO

пл. 886, кип. 1535

PbO2

разл. > 344

(Pb2IIPbIV)O4

550 ® PbO

Ra

пл. 969, кип. 1536

Rb

пл. 39, кип. 696

Re

пл. 3190, кип. ок. 5900

S8 (монокл.)

пл. 119, кип. 445

S8 (ромб.)

96 ® S8 (монокл.)

SO2

пл.- 75, кип.- 10

SO3

пл. 17, кип. 45

Sb

пл. 631, кип. 1634

SbH3

пл. - 94, кип. - 18

Sb2O3

пл. 655, кип. 1456

Se

пл. 217, кип. 685

SeO2

возг. 315, пл. 340

SeO3

пл. 118, разл. > 185

Si

пл. 1415, кип. ок. 3250

SiH4

пл.- 185, кип.- 112

SiO2 (кварц)

пл. 1550, кип. 2950

Sn

пл. 232, кип. 2620

SnO

пл. 1040, кип. 1425

SnO2

пл. 1630, кип. 2500

Sr

пл. 768, кип. 1390

Tc

пл. 2250, кип.ок. 4600

Te

пл. 450, кип. 990

TeO2

пл. 733, кип. 1257

TeO3

разл. > 400

Ti

пл. 1668, кип. 3260

TiO2

пл. 1870, кип. ок. 3000

Tl

пл. 304, кип. 1457

Tl2O

пл. 303, кип. ок. 1100

V

пл. 1920, кип. 3450

W

пл. 3387, кип. ок. 5680

Zn

пл. 420, кип. 906

ZnO

возг. 1725, разл.

 

Сокращения:
возг. - возгонка; кип. - кипение; ок. - около;
пл. - плавление; разл. - разложение; ® - переход одного вещества в другое


Примечание: определение температуры плавления графита является очень важной, но очень сложной научной проблемой, которой занимаются во всем мире. В данном справочнике мы приводим значение, которое, исходя из обзора Савватимского Александра Ивановича, зав. лаб. электровзрывных процессов ОИВТ РАН, является в настоящее время наиболее обоснованным и полученным с помощью самых современных методов. Обзор и описание методов см. в работах:
Савватимский А.И."Плавление графита и жидкий углерод" УФН том 173 №12 стр.1371

A. I. Savvatimskiy. "Liquid carbon density and resistivity" J. Phys.: Condens. Matter 20 (2008) 114112

Korobenko V.N., Savvatimskiy A.I. "Graphite melting temperature" Electronic journal “INVESTIGATED IN RUSSIA” 2161

Примечание ко всем таблицам свойств: источниками справочных данных являются публикации в Интернете, поэтому они не могут считаться «официальными» и «абсолютно точными». Как правило, в Интернет справочниках не приводятся ссылки на научные работы, являющиеся основой опубликованных данных. Мы стараемся брать информацию из наиболее надежных научных сайтов. Однако если кого-то интересуют ссылки на эксперименты, советуем произвести самостоятельно углубленный поиск в Интернете. Будем признательны за любые комментарии к нашим справочным таблицам, а особенно за уточнения существующей информации или дополнение справочных данных.

Тугоплавкие металлы | это... Что такое Тугоплавкие металлы?

H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac ** Rf Db Sg Bh Hs Mt Ds Rg
* Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
Тугоплавкие металлы Расширенная группа тугоплавких металлов[1]

Тугоплавкие металлы — класс химических элементов (металлов), имеющих очень высокую температуру плавления и стойкость к изнашиванию. Выражение тугоплавкие металлы чаще всего используется в таких дисциплинах как материаловедение, металлургия и в технических науках. Определение тугоплавких металлов относится к каждому элементу группы по разному. Основными представителями данного класса элементов являются элементы пятого периода — ниобий и молибден; шестого периода — тантал, вольфрам и рений. Все они имеют температуру плавления выше 2000 °C, химически относительно инертны и обладают повышенным показателем плотности. Благодаря порошковой металлургии из них можно получать детали для разных областей промышленности.

Определение

Большинство определений термина тугоплавкие металлы определяют их как металлы имеющие высокие температуры плавления. По этому определению, необходимо, что бы металлы имели температуру плавления выше 2 200 °C. Это необходимо для их определения как тугоплавких металлов[2]. Пять элементов — ниобий, молибден, тантал, вольфрам и рений входят в этот список как основные[3], в то время как более широкое определение этих металлов позволяет включить в этот список еще и элементы имеющие температуру плавления 2123K (1850 °C) — титан, ванадий, хром, цирконий, гафний, рутений и осмий. Трансурановые элементы (все изотопы которых нестабильны и на земле их найти очень трудно) никогда не будут относиться к тугоплавким металлам[4].

Свойства

Физические свойства

Температура плавления этих элементов самая высокая, исключая углерод и осмий. Данное свойство зависит не только от их свойств, но и от свойств их сплавов. Металлы имеют кубическую сингонию, исключая рений, у которого она принимает вид гексагональной плотнейшей упаковки. Большинство физических свойств элементов в этой группе существенно различается, потому что они являются членами различных групп[5][6].

Сопротивление к деформации ползучести (англ.) является определяющим свойством тугоплавких металлов. У обычных металлов деформация начинается с температуры плавления металла, а отсюда деформация ползучести в алюминиевых сплавах начинается от 200 °C, в то время как у тугоплавких металлов она начинается от 1500 °C. Это сопротивление к деформации и высокая температура плавления позволяет тугоплавким металлам быть использованными, например, в качестве деталей реактивных двигателей или при ковке различных материалов[7][8].

Химические свойства

На открытом воздухе подвергаются окислению. Эта реакция замедляется в связи с формированием пассивированного слоя. Оксид рения является очень неустойчивым, потому что при пропускании плотного потока кислорода его оксидная плёнка испаряется. Все они относительно устойчивы к воздействию кислот.[5]

Применение

Тугоплавкие металлы используются в качестве источников света, деталей, смазочных материалов, в ядерной промышленности в качестве АРК, в качестве катализатора. Из-за того, что они имеют высокие температуры плавления, они никогда не используются в качестве материала для выплавки на открытом месте. В порошкообразном виде материал уплотняют с помощью плавильных печей. Тугоплавкие металлы можно переработать в проволоку, слиток, арматуру, жесть или фольгу.

Вольфрам и его сплавы

Вольфрам был найден в 1781 году шведским химиком Карлом Вильгельмом Шееле. Вольфрам имеет самую высокую температуру плавления среди всех металлов — 3422 °C.

Вольфрам.

Рений используется в сплавах с вольфрамом в концентрации до 22 %, что позволяет повысить тугоплавкость и устойчивость к коррозии. Торий применяется в качестве легирующего компонента вольфрама. Благодаря этому повышается износостойкость материалов. В порошковой металлургии компоненты могут быть использованы для спекания и последующего применения. Для получения тяжёлых сплавов вольфрама применяются никель и железо или никель и медь. Содержание вольфрама в данных сплавах как правило выше 90 %. Смешивание легирующего материала с ним низкое даже при спекании[9].

Вольфрам и его сплавы по-прежнему используются там, где присутствуют высокие температуры, но нужна однако высокая твёрдость и где высокой плотностью можно пренебречь[10]. Нити накаливания, состоящие из вольфрама, находят свое применение в быту и в приборостроении. Лампы более эффективно преобразовывают электроэнергию в свет с повышением температуры[9]. В вольфрамовой газодуговой сварке (англ.) оборудование используется постоянно, без плавления электрода. Высокая температура плавления вольфрама позволяет ему быть использованным при сварке без затрат[11][12]. Высокая плотность и твёрдость позволяют вольфраму быть использованным в артиллерийских снарядах[13]. Его высокая температура плавления применяется при строении ракетных сопел, примером может служить ракета «Поларис»[14]. Иногда он находит свое применение благодаря своей плотности. Например, он находит свое применение в производстве клюшек для гольфа[15][16]. В таких деталях применение не ограничивается вольфрамом, так как более дорогой осмий тоже может быть использован.

Сплавы молибдена
Молибден.

Широкое применение находят сплавы молибдена. Наиболее часто используемый сплав — титан-цирконий-молибден — содержит в себе 0,5 % титана, 0,08 % циркония и остальное молибден. Сплав обладает повышенной прочностью при высоких температурах. Рабочая температура для сплава — 1060 °C. Высокое сопротивление сплава вольфрам-молибден (Mo 70 %, W 30 %) делает его идеальным материалом для отливки деталей из цинка, например, клапанов[17].

Молибден используется в ртутных герконовых реле, так как ртуть не формирует амальгамы с молибденом[18][19].

Молибден является самым часто используемым тугоплавким металлом. Наиболее важным является его использование в качестве усилителя сплавов стали. Применяется при изготовлении трубопроводов вместе с нержавеющей сталью. Высокая температура плавления молибдена, его сопротивляемость к износу и низкий коэффициент трения делают его очень полезным материалом для легирования. Его прекрасные показатели трения приводят его к использованию в качестве смазки где требуется надежность и производительность. Применяется при производстве ШРУСов в автомобилестроении. Большие месторождения молибдена находятся в Китае, США, Чили и Канаде[20][21][22][23].

Сплавы ниобия

Ниобий. Тёмная часть сопла Apollo CSM сделана из сплава титан-ниобий.

Ниобий почти всегда находится вместе с танталом; ниобий был назван в честь Ниобы, дочери Тантала в греческой мифологии. Ниобий находит множество путей для применения, некоторые он разделяет с тугоплавкими металлами. Его уникальность заключается в том, что он может быть разработан путем отжига для того, чтобы достичь широкого спектра показателей твёрдости и упругости; его показатель плотности самый малый по сравнению с остальными металлами данной группы. Он может применяться в электролитических конденсаторах и является самым частым металлом в суперпроводниковых сплавах. Ниобий может применяться в газовых турбинах воздушного судна, в электронных лампах и ядерных реакторах.

Сплав ниобия C103, который состоит из 89 % ниобия, 10 % гафния и 1 % титана, находит свое применение при создании сопел в жидкостных ракетных двигателях, например таких как Apollo CSM (англ.)[24]. Применявшийся сплав не позволяет ниобию окисляться, так как реакция происходит при температуре от 400 °C[24].

Тантал

Тантал.

Тантал является самым стойким к коррозии металлом из всех тугоплавких металлов.

Важное свойство тантала было выявлено благодаря его применению в медицине — он способен выдерживать кислую среду (организма). Иногда он используется в электролитических конденсаторах. Применяется в конденсаторах сотовых телефонов и компьютера.

Сплавы рения

Рений.

Рений является самым последним открытым тугоплавким элементом из всей группы. Он находится в низких концентрациях в рудах других металлов данной группы — платины или меди. Может применяться в качестве легирующего компонента с другими металлами и придает сплавам хорошие характеристики — ковкость и увеличивает предел прочности. Сплавы с рением могут применяться в компонентах электронных приборов, гироскопах и ядерных реакторах. Самое главное применение находит в качестве катализатора. Может применяться при алкилировании, деалкилировании, гидрогенизации и окислении. Его столь редкое присутствие в природе делает его самым дорогим из всех тугоплавких металлов[25].

Общие свойства тугоплавких металлов

Тугоплавкие металлы и их сплавы привлекают внимание исследователей из-за их необычных свойств и будущих перспектив в применении.

Физические свойства тугоплавких металлов, таких как молибден, тантал и вольфрам, их показатели твёрдости и стабильность при высоких температурах делает их используемым материалом для горячей металлообработки материалов как в вакууме, так и без него. Многие детали основаны на их уникальных свойствах: например, вольфрамовые нити накаливания способны выдерживать температуры вплоть до 3073K.

Однако, их сопротивляемость к окислению вплоть до 500 °C делает это одним из главных недостатков этой группы. Контакт с воздухом может существенно повлиять на их высокотемпературные характеристики. Именно поэтому их используют в материалах, в которых они изолированы от кислорода (например лампочка).

Сплавы тугоплавких металлов — молибдена, тантала и вольфрама — применяются в деталях космических ядерных технологий. Эти компоненты были специально созданы в качестве материала способного выдержать высокие температуры (от 1350K до 1900K). Как было указано выше, они не должны контактировать с кислородом.

См. также

Примечания

  1. H. Ortner International Journal of Refractory Metals and Hard Materials  (англ.). Elsevier. Архивировано из первоисточника 20 июня 2012. Проверено 26 сентября 2010.
  2. Michael Bauccio Refractory metals // ASM metals reference book / American Society for Metals. — ASM International, 1993. — С. 120—122. — ISBN 19939780871704788
  3. Wilson, J. W General Behaviour of Refractory Metals // Behavior and Properties of Refractory Metals. — Stanford University Press, 1965. — С. 1—28. — 419 с. — ISBN 9780804701624
  4. Joseph R. Davis Alloying: understanding the basics. — ASM International, 2001. — С. 308—333. — 647 с. — ISBN 9780871707444
  5. 1 2 Borisenko, V. A. Investigation of the temperature dependence of the hardness of molybdenum in the range of 20—2500 °C // Журнал Soviet Powder Metallurgy and Metal Ceramics. — 1963. — С. 182. — DOI:10.1007/BF00775076
  6. Fathi, Habashi Historical Introduction to Refractory Metals // Журнал Mineral Processing and Extractive Metallurgy Review. — 2001. — С. 25—53. — DOI:10.1080/08827509808962488
  7. Schmid, Kalpakjian Creep // Manufacturing engineering and technology. — Pearson Prentice Hall, 2006. — С. 86—93. — 1326 с. — ISBN 9787302125358
  8. Weroński, Andrzej; Hejwowski, Tadeusz Creep-Resisting Materials // Thermal fatigue of metals. — CRC Press, 1991. — С. 81—93. — 366 с. — ISBN 9780824777265
  9. 1 2 Erik Lassner, Wolf-Dieter Schubert Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. — Springer, 1999. — С. 255—282. — 422 с. — ISBN 9780306450532
  10. National Research Council (U.S.), Panel on Tungsten, Committee on Technical Aspects of Critical and Strategic Material Trends in Usage of Tungsten: Report. — National Research Council, National Academy of Sciences-National Academy of Engineering, 1973. — С. 1—3. — 90 с.
  11. Michael K. Harris Welding Health and Safety // Welding health and safety: a field guide for OEHS professionals. — AIHA, 2002. — С. 28. — 222 с. — ISBN 9781931504287
  12. William L. Galvery, Frank M. Marlow Welding essentials: questions & answers. — Industrial Press Inc., 2001. — С. 185. — 469 с. — ISBN 9780831131517
  13. W. Lanz, W. Odermatt, G. Weihrauch (7—11 мая 2001). "KINETIC ENERGY PROJECTILES: DEVELOPMENT HISTORY, STATE OF THE ART, TRENDS" in 19th International Symposium of Ballistics.. 
  14. P. Ramakrishnan Powder metallurgyfor Aerospace Applications // Powder metallurgy: processing for automotive, electrical/electronic and engineering industry. — New Age International, 2007. — С. 38. — 381 с. — ISBN 8122420303
  15. Arora, Arran Tungsten Heavy Alloy For Defence Applications // Журнал Materials Technology. — 2004. — В. 19. — № 4. — С. 210—216.
  16. V. S. Moxson, F. H. Froes Fabricating sports equipment components via powder metallurgy // Журнал JOM. — 2001. — В. 53. — С. 39. — DOI:10.1007/s11837-001-0147-z
  17. Robert E. Smallwood TZM Moly Alloy // ASTM special technical publication 849: Refractory metals and their industrial applications: a symposium. — ASTM International, 1984. — С. 9. — 120 с. — ISBN 19849780803102033
  18. Kozbagarova, G. A.; Musina, A. S.; Mikhaleva, V. A. Corrosion Resistance of Molybdenum in Mercury // Журнал Protection of Metals. — 2003. — В. 39. — С. 374—376. — DOI:10.1023/A:1024903616630
  19. Gupta, C. K. Electric and Electronic Industry // Extractive Metallurgy of Molybdenum. — CRC Press, 1992. — С. 48—49. — 404 с. — ISBN 9780849347580
  20. Michael J. Magyar Commodity Summary 2009:Molybdenum. United States Geological Survey. Архивировано из первоисточника 20 июня 2012. Проверено 26 сентября 2010.
  21. D.R. Ervin, D.L. Bourell, C. Persad, L. Rabenberg Structure and properties of high energy, high rate consolidated molybdenum alloy TZM // Журнал Materials Science and Engineering: A. — 1988. — В. 102. — С. 25.
  22. Neikov Oleg D. Properties of Molybdenum and Molybdenum Alloys powder // Handbook of Non-Ferrous Metal Powders: Technologies and Applications. — Elsevier, 2009. — С. 464—466. — 621 с. — ISBN 9781856174220
  23. Joseph R. Davis Refractory Metalls and Alloys // ASM specialty handbook: Heat-resistant materials. — ASM International, 1997. — С. 361—382. — 591 с. — ISBN 9780871705969
  24. 1 2 John Hebda Niobium alloys and high Temperature Applications // Журнал Niobium Science & Technology: Proceedings of the International Symposium Niobium 2001 (Orlando, Florida, USA). — Companhia Brasileira de Metalurgia e Mineração, 2001.
  25. J. W. Wilson Rhenium // Behavior and Properties of Refractory Metals. — Stanford University Press, 1965. — ISBN 9780804701624

Литература

  • Levitin, Valim High Temperature Strain of Metals and Alloys: Physical Fundamentals. — WILEY-VCH, 2006. — ISBN 978-3-527-31338-9
  • Brunner, T. Chemical and structural analyses of aerosol and fly-ash particles from fixed-bed biomass combustion plants by electron microscopy, 1st World Conference on Biomass for Energy and Industry: proceedings of the conference held in Sevilla, Spain, 5—9 June 2000, London: James & James Ltd (2000). Проверено 26 сентября 2010.
  • Donald Spink Reactive Metals. Zirconium, Hafnium, and Titanium // Журнал Industrial & Engineering Chemistry. — 1961. — В. 53. — № 2. — С. 97—104. — DOI:10.1021/ie50614a019
  • Earl Hayes Chromium and Vanadium // Журнал Industrial & Engineering Chemistry. — 1961. — В. 53. — № 2. — С. 105—107. — DOI:10.1021/ie50614a020

Учёные при помощи компьютерной симуляции предсказали материал с рекордной температурой плавления

Материаловеды из Университета Брауна (Род-Айленд, США) при помощи компьютерной симуляции подсчитали, что у материала, изготовленного из гафния, азота и углерода, будет самая высокая температура плавления из всех, известных на сегодняшний день. В своих вычислениях учёные использовали законы квантовой механики.

Металл гафний был открыт в начале 20-го века. Он сам по себе тугоплавкий – его температура плавления составляет 2506 К. Хотя это и меньше, чем, допустим, у знаменитого вольфрама (3695 К), но зато сплавы с участием углерода и гафния уже давно ставят рекорды по температурам плавления.

Например, с 1930 года рекорд по этому показателю держал карбид тантала-гафния (Ta4HfC5) – 4215 К. Но новый гипотетический материал побеждает в этом соревновании с температурой минимум в 4400 К. Это больше 3/4 эффективной температуры поверхности Солнца (5778 К). Правда, всё это пока лишь теория – необходимо ещё изготовить такой материал и проверить его в очень-очень горячей печи.

Но то, что такие теории можно просчитывать на компьютере – это большой шаг вперёд. «Преимущество подхода, в котором исследования начинаются с компьютерных симуляций, состоит в том, что мы можем проверить много различных комбинаций без больших расходов на тесты, и найти сразу те варианты, с которыми стоит поэкспериментировать в лаборатории,- поясняет Аксель ван де Вэйл, помощник профессора и соавтор статьи. – В обычной ситуации мы действовали бы наугад – но теперь мы знаем, с чем можно экспериментировать».

При помощи суперкомпьютера Национального научного фонда учёные симулировали физические процессы на атомном уровне, моделируя поведение сотни атомов, используя законы квантовой физики. Отталкиваясь от структуры карбида тантала-гафния, учёные при помощи компьютерных вычислений выяснили, какие именно факторы приводят к такой высокой температуре плавления.

Выяснилось, что карбид тантала-гафния сочетает высокую удельную теплоту плавления с маленькой разницей в энтропии между жидкой и твёрдой фазами. Как объясняет ван де Вэйл, при плавлении материала увеличивается его энтропия, и если разница энтропии между твёрдым и жидким состоянием мала, то температура, требуемая для фазового перехода, у такого материала довольно высокая. Исходя из этого, им удалось подобрать материал, у которого разница в энтропиях ниже, чем у исходного, а температура плавления, соответственно, выше.

Из сплавов тантала и гафния делают детали ракетной техники (сопла, газовые рули) и электроды для воздушно-плазменной и кислородно-пламенной резки металлов. Характеристики теоретически предсказанного материала ещё предстоит уточнить на практике – такие свойства, как механические свойства, окисляемость, и прочее, важны не менее, чем температура плавления. Но, как отмечает, ван де Вэйл, работа по теоретическому расчёту температуры плавления – сама по себе знаковая, поскольку её достаточно трудно рассчитать, по сравнению с другими характеристиками материалов.

Температура плавления некоторых металлов, их сплавов и сталей в градусах Цельсия.

Температура плавления некоторых металлов и их сплавов и сталей в градусах Цельсия.

90 015-38.86
Металл Температура плавления
Латунь (Cu-69%, Zn 30%, Sn-1%) 900 - 940
Алюминий 660
Алюминиевые сплавы 463 - 671
Алюминиевая бронза 600 - 655
Сурьма 630
Берилл 1285
Медный берилл 865 - 955
Висмут 271.4
Латунь 1000 - 930
Кадмий 321
Серый чугун 1175 - 1290
Хром 1860
Кобальт 1495
Медь 1084
Мельхиор 1170 - 1240
Золото, 24К 1063
Хастеллой С 1320 - 1350
Инконель 1390 - 1425
Инколой 1390 - 1425
Иридий - Иридий 2450
Кованое железо 1482 - 1593
Чугун, серый чугун 1127 - 1204
Ковкий чугун 1149
Свинец 327,5
Магний 650
Магниевые сплавы 349 - 649
Марганец 1244
Марганцево-коричневый 865 - 890
Меркурий
Молибден 2620
Монель 1300 - 1350
Никель 1453
Ниобий (колумбий) 2470
Осм 3025
Палладий 1555
Люминофор 44
Платина 1770
Плутон 640
Калий 63.3
Красная латунь 990 - 1025
Рен 3186
Стержень 1965
Рутений 2482
Селен 217
Кремний 1411
Серебро, Монета 879
Чистое серебро 961
Серебро 92,5% + надбавка 893
Натрий 97.83
Углеродистая сталь 1425 - 1540
Нержавеющая сталь 1510
Тантал 2980
Трек 1750
Олово 232
Титан 1670
Вольфрам 3400
Уран 1132
Ванадий 1900
Желтая латунь 905 - 932
Цинк 419.5
Циркон 1854


.90 000 американских ученых разработали супермет - tvp.info

Комбинация гафния, углерода и азота. В правильных пропорциях такой сплав обладает теоретически замечательными свойствами. Ученые американского Университета Брауна подсчитали, что температура плавления такого металла составит 4400 градусов Кельвина, или 4126 градусов Цельсия.

Мостик в стиле оригами.Гениальное изобретение японских инженеров

Обеспечение связью регионов, пострадавших от стихийных бедствий, является сложной задачей для служб: ее необходимо выполнять быстро, а природные условия...

увидеть больше

Если удастся создать такой сплав и он будет обладать нужными свойствами, то это будет самое тугоплавкое вещество, известное человеку.Считающаяся стойкой, сталь плавится при температуре около 1500 градусов Цельсия, золото — около 1000 градусов Цельсия, а алюминий — всего 660 градусов Цельсия.

Ученые из Университета Род-Айленда использовали компьютерное моделирование для разработки новой формулы. Теперь они надеются синтезировать такой металл и подвергнуть его дальнейшим исследованиям.

Более дешевый метод

- Преимущество компьютерного моделирования заключается в том, что различные комбинации можно опробовать с меньшими затратами.Вместо того, чтобы искать в темноте, у нас есть шанс найти решение, о котором стоит позаботиться в лаборатории, — пояснил проф. Аксель ван де Валле из Университета Брауна.

В настоящее время наиболее устойчивым к плавлению веществом является сплав гафния, тантала и углерода. Он плавится при 3526 градусах Цельсия. Эти типы металлов в основном используются в теплозащитных экранах космических аппаратов и газовых турбинах.

источник: ежедневная почта.co.uk

#металл #Останавливаться #гафний #коричневый университет #азот #золото #алюминий .

Знания - Металлы

Для пайки меди и ее сплавов особенно широко применяют медно-фосфорные сплавы, обладающие рядом преимуществ в качестве припоев. К ним относятся:
а) хорошие технологические свойства (низкотемпературные... Читать дальше...

Еще одной важной группой припоев на основе меди являются медно-цинково-никелевые сплавы, содержащие от 2 до 30 % никеля, что, как уже было сказано, улучшает механические свойства, но одновременно повышает температуру плавления.Иногда эти феврали дополнительно содержат кремний... Читать далее. . .

Медно-цинковые сплавы плавятся в интервале температур 800-1020°С, чем выше содержание цинка, тем ниже температура плавления. Серьезным преимуществом этих сплавов является малый интервал их кристаллизации.

Свойства медно-цинковых сплавов также зависят от… Читать дальше. . .

Температура плавления чистой меди 1083°С, поэтому для пайки медью требуется температура 1100-1200°С.Медь имеет хорошие паяльные свойства. В жидком состоянии увлажняет соединяемые металлы (особенно стали) и создает… Читать далее. . .

Твердые припои

, т. е. припои с относительно высокими температурами плавления (в пределах 400-2000°С), применяются преимущественно в тех случаях, когда от паяного соединения требуется высокая прочность.

Твердые припои образуют соединения в основном за счет образования твердых растворов… Подробнее. . .

Февраль на основе индия.Индий, как и висмут, является одним из наиболее легкоплавких металлов (температура плавления индия 156,2 °С). С другими металлами этой группы, т.е. оловом, висмутом, кадмием и цинком, он образует ряд сплавов, некоторые из которых… Читать далее. . .

Февраль на основе висмута. Чистый висмут, как и большинство легкоплавких металлов, не годится в качестве припоя, в основном из-за его высокой хрупкости. Однако этот металл важен как компонент, вызывающий значительное снижение… Читать дальше.. .

Февраль на основе кадмия. Чистый кадмий пока не нашел практического применения в качестве припоя. Однако в качестве легирующего элемента он входит в состав большинства мягких припоев. Кроме того, некоторые сплавы, в которых кадмий является основным компонентом,… Читать дальше. . .

Февраль на основе цинка. Чистый цинк редко используется в качестве припоя, хотя пайка с ним, например, алюминиевых сплавов дает удовлетворительные результаты. Цинковые сплавы, содержащие алюминий, кадмий, олово, медь, реже свинец, марганец и… Читать дальше.. .

Февраль на основе свинца

Чистый свинец нельзя использовать в качестве припоя, так как он не образует прочных связей с большинством металлов (медь, железо, кобальт, алюминий, цинк и т. д.). Однако широко использовались сплавы свинца, особенно с оловом.… Читать дальше. . .

.

Физические свойства металлов. Температура плавления и плотность металлов и сплавов

Температура плавления металлов, которая колеблется от низшей (-39°С для ртути) до высшей (3400°С для вольфрама), а также плотность твердых металлов при 20°С и плотность жидких металлов при температуры плавления приведены в таблице плавки цветных металлов .

Таблица 1. Выплавка цветных металлов

Атомный вес

Температура плавления t и , °С

Плотность ρ , г/см3

устойчивый при 20°С

редко в

т и

Алюминий

Вольфрам

Марганец

молибден

Циркон

Сварка и плавка цветных металлов

Сварка меди .Температура плавления металлической Cu почти в шесть раз выше температуры плавления стали, медь интенсивно поглощает и растворяет различные газы, образуя с кислородом оксиды. Оксид меди II с медью образует эвтектику, температура плавления которой (1064 °С) ниже, чем у меди (1083 °С). Когда жидкая медь затвердевает, эвтектика располагается по границам зерен, что делает медь хрупкой и склонной к растрескиванию. Поэтому основной задачей при сварке меди является защита ее от окисления и активное раскисление сварочной ванны.

Наиболее распространена газовая сварка меди кислородно-ацетиленовым пламенем с использованием горелок в 1,5...2 раза мощнее стальной сварочной горелки. Связующее — медные стержни, содержащие фосфор и кремний. Если толщина изделий больше 5...6 мм, их сначала нагревают до температуры 250...300°С. Сварочные флюсы представляют собой обожженную буру или смесь 70 % буры и 30 % борной кислоты. Повышают механические свойства и улучшают структуру наплавленного металла, медь после сварки проковывают при температуре ок.200...300°С. Затем его повторно нагревают до 500-550°С и охлаждают в воде. Медь также сваривают электрической дугой с электродами, в токе защитных газов, под слоем флюса, на конденсаторных машинах методом трения.

сварка латуни . Латунь представляет собой сплав меди и цинка (до 50%). Основным загрязнением в этом случае является испарение цинка, в результате чего шов теряет свои свойства, в нем появляются поры.Латунь, как и медь, в основном сваривают ацетиленовым окислительным пламенем, которое образует на поверхности ванны пленку тугоплавкого оксида цинка, ограничивающую дальнейшее прогорание и испарение цинка. Флюсы используются так же, как и для сварки меди. Они образуют на поверхности ванны шлаки, которые связывают оксиды цинка и затрудняют выход паров из сварочной ванны. Латунь также сваривают в защитных газах и на контактных машинах.

бронзовая сварка .В большинстве случаев бронза является литейным материалом, поэтому сварка

применяется при устранении дефектов или при ремонте. Наиболее часто используется сварка металлическим электродом. Связующее изготавливается из стержней того же состава, что и основной металл, а флюсы или покрытие электродов представляют собой соединения хлоридов и фторидов калия и натрия.

. Основными факторами, препятствующими сварке алюминия, являются его низкая температура плавления (658°С), высокая теплопроводность (примерно в 3 раза выше теплопроводности стали), образование тугоплавких оксидов алюминия, имеющих температуру плавления 2050°С. С, т.е. технология плавки цветных металлов , , такие как медь или бронза, не подходят для плавки алюминия.Кроме того, эти оксиды плохо реагируют как с кислотными, так и с основными флюсами и поэтому плохо удаляются из сварного шва.

Самый распространенный факел для газовой сварки алюминия с ацетиленом. В последние годы получили широкое распространение также сварка под флюсом и автоматическая дуговая сварка металлическими электродами в среде аргона. Для всех способов сварки, за исключением аргонодуговой, применяют флюсы или электродные покрытия, в состав которых входят соединения фтора и хлора, лития, калия, натрия и других элементов.Проволока или стержни того же состава, что и основной металл, используются в качестве связующего для всех способов сварки.

Алюминий хорошо сваривается электронным лучом в вакууме, на контактных машинах, электрошлаковым и другими способами.

Сварка алюминиевых сплавов . Алюминиевые сплавы с магнием и цинком свариваются без особых осложнений

, так же как и алюминий. Исключение составляет дюралюминий – алюминиево-медные сплавы.Эти сплавы термически упрочняются после закалки и последующего старения. При температуре плавления цветных металлов выше 350°С в них происходит снижение прочности, не восстанавливаемое термической обработкой. Поэтому при сварке дюралюминия в околошовной зоне прочность падает на 40...50 %. Если дюраль сваривают в защитных газах, то такое снижение можно восстановить термической обработкой до 80...90 % по отношению к прочности основного металла.

Сварка магниевых сплавов . При газовой сварке обязательно применяют фторидные флюсы, которые в отличие от хлоридных флюсов не вызывают коррозии сварных соединений. Дуговая сварка магниевых сплавов металлическими электродами из-за низкого качества сварных швов до сих пор не применялась. При сварке магниевых сплавов наблюдается значительное увеличение зерна на участках, близких к шву, и сильное развитие столбчатых кристаллов в шве.Поэтому предел прочности сварных соединений составляет 55...60 % предела прочности основного металла.

Таблица 2. Физические свойства промышленных цветных металлов

Недвижимость

М м и высокий

Атомный номер

Атомный вес

при температуре

20°С, кг/м² 3

Температура плавления, °С

Температура кипения, °С

Атомный диаметр, нм

Скрытая теплота плавления, кДж/кг

Скрытая теплота парообразования

Удельная теплоемкость при температуре 20°С, Дж/(кг .°С)

Удельная теплопроводность, 20°С, Вт/(м - °С)

Коэффициент линейного расширения при температуре 25°С, 10 6 - ° З - 1

Удельное электрическое сопротивление при температуре 20°С, мкОм - м

Модуль нормальной упругости, ГПа

Модуль сдвига, ГПа

Плавильный тигель

Неотъемлемой частью производства металла и металлических изделий является их использование в процессе производства тиглей для производства, плавки и переплава черных и цветных металлов.Тигли являются составной частью металлургического оборудования для литья различных металлов, сплавов и тому подобного.

Керамический тигель для плавки цветных металлов используется для плавки металлов (медь, бронза) с древних времен.

После кристаллизации убедитесь, что вещество достаточно чистое. Наиболее простым и эффективным методом выявления и определения меры чистоты вещества является определение его температуры плавления ( Т пл). Температура плавления – это диапазон температур, при котором твердое вещество становится жидким.Все чистые химические вещества имеют узкий температурный диапазон перехода из твердого состояния в жидкое. Этот диапазон температур для чистых веществ составляет максимум 1-2 o C. Использование температуры плавления в качестве меры чистоты вещества основано на том, что наличие примесей (1) снижает температуру плавления и ( 2) расширяет диапазон температур плавления. Например, чистый образец бензойной кислоты плавится в интервале 120–122 °С, а слабозагрязненный образец плавится при 114–119 °С.

Использование температуры плавления для идентификации, конечно, сопряжено с большой неопределенностью, поскольку существует несколько миллионов органических соединений, и многие из них неизбежно совпадают с их точками плавления. Однако, во-первых, Т мкл вещества, полученного в синтезе, почти всегда отличается от Т мкл исходных соединений. Во-вторых, можно использовать метод «определения точки плавления смешанного образца». Если Т пл смеси равных количеств испытуемого вещества и известного образца не отличаются от Т пл последнего, то оба образца представляют собой одно и то же вещество.

МЕТОД ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ . Тщательно растереть испытуемое вещество в мелкий порошок. Капилляр заполняется веществом (высотой 3-5 мм; капилляр должен быть тонкостенным, запаянным с одной стороны, внутренним диаметром 0,8-1 мм и высотой 3-4 см). Для этого осторожно вдавливают открытый конец капилляра в порошок вещества и периодически постукивают его запаянным концом о поверхность стола 5-10 раз. Для полного вытеснения порошка в запаянный конец капилляра его насыпают в вертикальную стеклянную трубку (длиной 30-40 см и диаметром 0,5-1 см) на твердой поверхности.Вставьте капилляр в металлический патрон, прикрепленный к наконечнику термометра (рис. 3.5), и поместите термометр с патроном в прибор для определения температуры плавления.

В приборе термометр с капиллярами нагревается электрической катушкой, напряжение на которую подается через трансформатор, а скорость нагрева зависит от приложенного напряжения. Сначала аппарат нагревают со скоростью 4-6°С в минуту и ​​на 10°С, а затем ожидаемый Т пл нагревают со скоростью 1-2°С в минуту.За температуру плавления принимают расстояние от размягчения кристаллов (смачивания вещества) до полного их плавления.

Полученные данные заносятся в лабораторный журнал.

    1. Перегонка

Дистилляция является важным и широко используемым методом очистки органических жидкостей и разделения жидких смесей. Этот метод включает кипячение и испарение жидкости, а затем конденсацию паров в дистиллят. Разделение двух жидкостей с разницей температур кипения 50-70°С и более можно осуществить простой перегонкой.Если разница меньше, необходимо применять фракционную перегонку в более сложном аппарате. Некоторые жидкости с высокой температурой кипения разлагаются при перегонке. Однако при падении давления температура кипения падает, что позволяет перегонять высококипящие жидкости без разложения в вакууме.

При котором кристаллическая решетка металла разрушается и переходит из твердого состояния в жидкое.

Температура плавления металлов - показатель температуры нагретого металла, при которой начинается процесс (плавление).Сам процесс противоположен кристаллизации и неразрывно с ней связан. Расплавить металл? Его необходимо нагреть с помощью внешнего источника, нагреть до точки плавления, а затем продолжать обеспечивать тепло для преодоления энергии фазового перехода. Дело в том, что значение температуры плавления металлов само по себе указывает на температуру, при которой материал будет находиться в фазовом равновесии на границе жидкость-твердое тело. При этой температуре чистый металл может находиться как в твердом, так и в жидком состоянии одновременно.Для осуществления процесса плавления необходимо перегреть металл немного выше равновесной температуры, чтобы обеспечить положительный термодинамический потенциал. Усильте процесс.

Температура плавления металлов постоянна только для чистых веществ. Наличие примесей будет смещать равновесный потенциал в ту или иную сторону. Это связано с тем, что металл с примесями образует другую кристаллическую решетку, и силы взаимодействия атомов в них будут отличаться от таковых в чистых материалах.В зависимости от температуры плавления металлы делят на легкоплавкие (до 600°С, например галлий, ртуть), среднеплавкие (600-1600°С, медь, алюминий) и тугоплавкие (>1600°С, вольфрам, молибден).

В современном мире чистые металлы редко используются из-за их ограниченных физических свойств. В промышленности давно и плотно используются различные сочетания металлов - сплавов, разновидностей и свойств которых гораздо больше. Температура плавления металлов, из которых состоят различные сплавы, также будет отличаться от точки плавления их сплава.Различные концентрации веществ определяют порядок их плавления или кристаллизации. Однако существуют равновесные концентрации, при которых металлы, входящие в состав сплава, затвердевают или плавятся одновременно, т. е. ведут себя как однородный материал. Такие сплавы называются эвтектическими.

Знание температуры плавления очень важно при работе с металлом, это значение необходимо как на производстве, для расчета параметров сплава, так и при эксплуатации металлических изделий, когда изменяется температура фазового перехода материала, из которого изготовлено изделие делается решает.ограничения в его использовании. Для удобства эти данные сведены в единую плавку металлов — суммарный результат физических характеристик различных металлов. Аналогичные таблицы есть и для сплавов. Температура плавления металлов также зависит от давления, поэтому данные в таблице приведены для конкретного значения давления (обычно это нормальные условия, когда давление составляет 101,325 кПа). Чем выше давление, тем выше температура плавления, и наоборот.

Одним из основных направлений в металлургической промышленности является литье металлов и их сплавов в связи с дешевизной и относительной простотой процесса.Вы можете отливать формы любого контура различных размеров, от маленьких до больших; подходит как для массового производства, так и для индивидуального производства.

Литье является одним из древнейших направлений металлообработки и берет свое начало примерно в бронзовом веке: 7-3 тысячелетия до н.э. мне. С тех пор было открыто много материалов, что привело к технологическому прогрессу и повышению требований в литейной промышленности.

В настоящее время существует множество направлений и видов литья, отличающихся технологическим процессом.Одно остается неизменным – физическое свойство металлов переходить из твердого состояния в жидкое, и важно знать, при какой температуре начинают плавиться разные виды металлов и их сплавов.

процесс плавки металла

Этот процесс относится к переходу вещества из твердого состояния в жидкое. После достижения температуры плавления металл может быть как твердым, так и жидким, дальнейший рост приведет к полному жидкостному переходу материала.

То же самое происходит и при затвердевании - как только будет достигнута точка плавления, вещество начнет переходить из жидкого состояния в твердое, а температура не изменится до полной кристаллизации.

При этом следует помнить, что это правило касается только голого металла. Сплавы не имеют четкого температурного предела и совершают переходы состояний в определенном диапазоне:

  1. Солидус - Температурная линия, при которой наиболее легкоплавкий компонент сплава начинает плавиться.
  2. Ликвидус – это конечная температура плавления всех компонентов, ниже которой начинают появляться первые кристаллы сплава.

Точка плавления таких веществ не может быть точно измерена, точка перехода состояния указывает числовой диапазон.

В зависимости от температуры, при которой начинается плавление металлов, их принято делить на:

  • Плавкий до 600°С. К ним относятся цинк, свинец и другие.
  • Среднеплавкий, до 1600°С.Наиболее распространены сплавы и металлы, такие как золото, серебро, медь, железо, алюминий.
  • Огнеупорный материал, температура выше 1600°С. Титан, молибден, вольфрам, хром.

Существует также точка кипения — точка, при которой расплавленный металл начинает выделять газ. Он очень теплый, обычно в 2 раза выше температуры плавления.

Влияние давления

Температура плавления и равная ему температура замерзания зависят от давления, которое увеличивается с ростом давления.Это связано с тем, что при увеличении давления атомы сближаются друг с другом и должны быть отодвинуты, чтобы разрушить кристаллическую решетку. Для высокого кровяного давления требуется больше энергии теплового движения, и соответствующая температура плавления увеличивается.

Существуют исключения, когда температура, необходимая для сжижения, снижается с увеличением давления. К таким веществам относятся лед, висмут, германий и сурьма.

Таблица температуры плавления

Для всех, кто работает в сталелитейной промышленности, будь то сварщик, литейщик, сталевар или ювелир, важно знать, при каких температурах плавятся материалы, с которыми они работают.В таблице ниже приведены температуры плавления наиболее распространенных веществ.

Таблица температур плавления металлов и сплавов

Имя Т.пл, °С
Алюминий 660,4
Медь 1084,5
Олово 231,9
Цинк 419,5
Вольфрам 3420
Никель 1455
Серебро 960
Золото 1064,4
Платина 1768
Титан 1668
Дюралюминий 650
Углеродистая сталь 11:00-15:00
11:10-14:00
Железо 1539
Меркурий -38.9
Мельхиор 1170
Циркон 3530
Кремний 1414
Нихром 1400
Висмут 271,4
немецкий 938,2
банка 13:00-15:00
Коричневый 930-1140
Кобальт 1494
Калий 63
Натрий 93,8
Латунь 1000
Магний 650
Марганец 1246
Хром 2130
молибден 2890
Свинец 327,4
Берилл 1287
, чтобы выиграть 3150
Фехраль 1460
Сурьма 630,6
Карбид титана 3150
карбид циркония 3530
Гал 29,76

Помимо плавильного стола есть много других вспомогательных материалов.Например, ответ на вопрос, какова температура кипения железа, дан в таблице кипящих веществ. Помимо кипения, металлы обладают рядом других физических свойств, таких как прочность.

Помимо возможности перехода из твердого состояния в жидкое, одним из важных свойств материала является его прочность - возможность твердого сопротивления растрескиванию и необратимым изменениям формы. Основным показателем прочности считается сопротивление, возникающее в результате разрушения предварительно отожженной заготовки.Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Прочность определяют в МПа - МегаПаскалях.

Группы прочности металла следующие:

  • Хрупкий. Их сопротивление не превышает 50 МПа. К ним относятся олово, свинец, мягкие щелочные металлы
  • Стабильный, 50-500 МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
  • Высокая прочность, свыше 500 МПа. Например, молибден и .

Таблица прочности металла

Самые распространенные ноги в повседневной жизни

Как видно из таблицы, температуры плавления элементов значительно различаются, даже для материалов, распространенных в быту.

Ну и минимальная температура.У ртути температура плавления -38,9°С, так что она уже жидкая при комнатной температуре. Этим и объясняется тот факт, что бытовые термометры имеют более низкий показатель -39 градусов Цельсия: ниже этого показателя ртуть становится твердой.

Наиболее часто используемые в бытовом применении припои имеют значительный процент содержания олова, имеющего температуру плавления 231,9°С, поэтому большинство припоев плавятся при рабочей температуре паяльника 250-400°С.

Кроме того, существуют легкоплавкие припои с более низкой температурой плавления, до 30°С, и применяются, когда опасен перегрев припаиваемых материалов. Для этих целей применяют припой с висмутом, а плавление этих материалов находится в пределах 29,7 - 120°С.

Температура плавления высокоуглеродистых материалов колеблется от 1100 до 1500°С в зависимости от легирующих элементов.

Температуры плавления металлов и их сплавов лежат в очень широком диапазоне температур, от очень низких температур (ртутный) до нескольких тысяч градусов. Знание этих показателей, как и других физических свойств, очень важно для людей, работающих в металлургической промышленности. Например, знание температуры плавления золота и других металлов пригодится ювелирам, литейщикам и сталелитейщикам.

Каждый металл и сплав имеет свой уникальный набор физических и химических свойств, не последним из которых является температура плавления.Сам процесс означает переход тела из одного физического состояния в другое, в данном случае из кристаллического твердого состояния в жидкое. Чтобы расплавить металл, необходимо приложить к нему тепло, пока не будет достигнута температура плавления. При нем он еще может оставаться твердым, но при дальнейшем воздействии и повышении температуры металл начинает плавиться. Если температуру понизить, то есть отвести некоторое количество тепла, элемент затвердеет.

Самая высокая температура плавления среди металлов принадлежит вольфраму : она составляет 3422 °С, самая низкая - у ртути: элемент плавится при - 39 °С.Как правило, точное значение для сплавов определить не удается: оно может существенно варьироваться в зависимости от процентного содержания компонентов. Обычно они записываются в виде диапазона чисел.

Как это происходит?

Все металлы плавятся примерно одинаково - при внешнем или внутреннем нагреве. Первый проходит в термической печи, второй при переходе - нагрев электрическим сопротивлением или индукционный нагрев в высокочастотном электромагнитном поле.Оба варианта воздействуют на металл схожим образом.

С повышением температуры амплитуда тепловых колебаний молекул также увеличивается, появляются дефекты структурной сетки, которые выражаются в увеличении дислокаций, скачков атомов и других нарушений. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. При этом на поверхности тела образуется квазижидкий слой. Период разрушения сети и накопления дефектов называется плавлением.

В зависимости от температуры плавления металлы делятся на:

В зависимости от температуры плавления выбирают и плавильный аппарат. Чем выше оценка, тем сильнее она должна быть. Вы можете проверить температуру необходимого элемента в таблице.

Другим важным значением является температура кипения. Это значение, при котором жидкость начинает кипеть, оно соответствует температуре насыщенного пара, образующегося над плоской поверхностью кипящей жидкости. Обычно она почти в два раза выше температуры плавления.

Оба значения обычно указываются при нормальном давлении. Между собой прямо пропорциональны .

  1. Давление увеличивается - количество расплава увеличивается.
  2. Давление падает - количество плавления уменьшается.

Таблица металлов и легкоплавких сплавов (до 600°С)

Таблица среднеплавких металлов и сплавов (от 600°С до 1600°С)

.

Температура плавления алюминия. Узнайте точные значения

Алюминий — это техническое название алюминия , который представляет собой химический элемент, принадлежащий к группе металлов. Интересно, что алюминий является третьим по распространенности элементом в земной коре — его весовое содержание составляет 8,13% (сразу после кислорода — 46,1% и кремния — 27,72%). Алюминий — очень популярный строительный материал, но он также используется во многих других отраслях экономики. Сегодня мы проверим, при какой температуре плавится алюминий и каковы его общие физико-химические свойства.

Температура плавления алюминия

Алюминий плавится при 660,32°С . Температура кипения этого элемента составляет целых 2519°С.

Можно ли плавить алюминий в домашних условиях? На самом деле это возможно, но довольно требовательно. Прежде всего следует иметь в виду, что этот элемент легко окисляется (пассивируется и покрывается слоем трехокиси алюминия), поэтому процесс переплавки следует проводить в защитной атмосфере.Таким образом, рассматриваемое покрытие придает алюминию коррозионную стойкость при нормальных условиях эксплуатации.

Интересен тот факт, что из алюминия делают емкости для хранения азотной кислоты. При контакте с этой кислотой она подвергается сильной пассивации и становится устойчивой к ее коррозионному воздействию.

Свойства алюминия

Алюминий

отличается прежде всего малой плотностью и высокой пластичностью. Не вызывает проблем при литье и последующей обработке (не образует искр).Он хорошо проводит электрический ток, но хуже по своим механическим свойствам. Для усиления конструкций из алюминия применяют различные легирующие добавки. Интересен тот факт, что чистый алюминий отлично отражает видимый свет (99%) и инфракрасное излучение (95%).

В связи с тем, что чистый алюминий не обладает удовлетворительными механическими свойствами, обычно используются различные типы сплавов. Сочетание других металлов и алюминия делает все это дело даже в несколько раз прочнее.Интересно, что некоторые алюминиевые сплавы отлично подходят как для литья, так и для формовки. К наиболее популярным алюминиевым потолкам относится фехраль (хромаль), т.е. сочетание железа, хрома и алюминия – особенностью этого сплава является его стойкость к окислению и сере.

К сожалению, несмотря на хорошие механические свойства, алюминиевые сплавы обладают худшей коррозионной стойкостью по сравнению с чистым металлом. Это связано с тем, что чистый алюминий вступает в реакцию с кислородом воздуха и естественным образом покрывается белым налетом – оксидом алюминия.Добавление других ингредиентов ухудшает эти свойства – особенно неблагоприятны медь и кремний.

Фото: en.freepik.com

Кшиштоф Камзол

Главный редактор Joblife.pl

.

Температура плавления металлов по сравнению с

niemetale 💫 Научно-популярный мультимедийный портал. 2022

Точка плавления элемента определяется при его переходе из твердого состояния в жидкое. Металлы, которые являются физически гибкими элементами, которые могут проводить тепло и электричество, имеют тенденцию быть твердыми при комнатной температуре из-за их относительно высоких температур плавления. Неметаллы, которые являются физически слабыми и слабыми проводниками тепла и электричества, могут быть твердыми, жидкими или газообразными, в зависимости от элемента.Температуры плавления как металлов, так и неметаллов сильно различаются, но металлы имеют тенденцию плавиться при более высоких температурах.

Формулы температуры плавления

После рассмотрения температур плавления всех элементов в периодической таблице появляется формула. По мере того, как вы двигаетесь слева направо в течение определенного периода времени (горизонтальный ряд), температура плавления элементов начинает расти, затем они достигают пика в Группе 14 (вертикальный столбец углерода вверху) и, в конце концов, снижаются вправо.По мере продвижения от верха к низу таблицы подъем и спад уменьшаются, а это означает, что элементы в нижних периодах имеют более близкие точки плавления.

Типы связи, повышающие температуру плавления

Существует два типа связи, которые приводят к более высокой температуре плавления: ковалентная и металлическая. Ковалентные связи образуются, когда пары электронов равномерно распределены между атомами, и еще больше сближают атомы друг с другом, когда задействовано несколько пар электронов.В металлических связях участвуют делокализованные электроны: они плавают между многими атомами, а не только между двумя, а положительно заряженные ядра прочно связаны с окружающим «морем» электронов.

Что снижает температуру плавления

Поскольку сильные связи между атомами придают элементам более высокие температуры плавления, также верно и то, что более низкие температуры плавления являются результатом более слабых связей или отсутствия связей между атомами. Ртуть, металл с самой низкой температурой плавления -38,9 градусов по Цельсию или -37,9 градусов по Фаренгейту - не может образовывать никаких связей, поскольку имеет нулевое сродство к электрону.Многие неметаллы, такие как кислород и хлор, сильно электроотрицательны: они обладают высоким сродством к электронам и успешно отрывают его от другого атома, поэтому связь легко рвется. В результате эти неметаллы имеют минусовые температуры.

Хотя многие металлы имеют высокие температуры плавления, существует избранная группа из нескольких элементов с чрезвычайно высокими температурами плавления и физической прочностью. Это тугоплавкие металлы или металлы с температурой плавления не менее 2000 градусов по Цельсию или 3632 градуса по Фаренгейту.Благодаря своей устойчивости к нагреву они используются в самых разных устройствах, от микроэлектроники до ракет. Например, металлы вольфрам и молибден считаются строительным материалом для электростанций из-за их чрезвычайно высоких температур плавления, которые обеспечивают огромную устойчивость к теплу.

.

Плазменная резка

ТРУБЫ

Рис. 5. Газ из сопла, проходя через электрическую дугу, ионизируется. Образовавшийся плазменный луч прорезает материал

.

Одной из наиболее важных частей насадки является отверстие. Изготавливается из драгоценного камня – обычно рубина, сапфира или бриллианта. Свойства материала отверстия имеют большое влияние на работу и техническое обслуживание форсунок и качество водяной струи. Сапфировые переходники популярны в гидроабразивных станках, у которых время работы при сохранении воды хорошего качества составляет от 50 до 100 часов резки.К сожалению, в случае абразивных струй срок службы этого материала сокращается вдвое, поэтому сапфир в них используется редко.

Для рубина верно обратное. Он пригоден в первую очередь для изготовления редукторов машин для резки абразивным материалом, у которых ресурс таких деталей составляет до 100 часов резки, а для гидроабразивных не рекомендуется. Самый прочный материал – алмаз – срок службы такого типа насадок обычно составляет от 800 до 2 тысяч.часы.

Немаловажно и то, что алмазные редукторы, в отличие от элементов из других материалов, можно чистить, например, ультразвуком. Поэтому, хотя алмаз дороже сапфира и рубина, стоит инвестировать в этот тип машины, если машина будет работать непрерывно в течение длительного времени.

КИСЛОРОДНАЯ РЕЗКА, ПЛАЗМЕННАЯ, ЛАЗЕРНАЯ

КИСЛОРОДНАЯ РЕЗКА И ОГРАНИЧЕНИЯ

Первый из названных способов использует процесс химического сжигания металла в токе чистого кислорода, который одновременно выдувает оксиды, образовавшиеся в результате этой реакции, из трещины.Этому процессу предшествует быстрый нагрев металла в месте реза до температуры воспламенения (рис. 3). Металл нагревают пламенем горелки, в которую подается газовая смесь, такая как ацетилен и кислород или пропан и кислород.

Выбор газообразного топлива зависит, в частности, от от требуемого качества кромки разрезаемого материала и толщины разрезаемого материала. Важна и стоимость – например, из-за цены на ацетилен ацетилен-кислородная смесь рекомендуется для обработки тонких материалов, нагрев которых не требует большого количества газа.С другой стороны, пропан, несмотря на более низкую температуру пламени, намного дешевле ацетилена и поэтому очень популярен в станках для резки, особенно там, где хорошее качество кромки не является приоритетом.

Помимо упомянутых газов, в режущих пластинах с кислородом часто используются пропилен, природный газ и водород. Ввиду специфики этого метода его применяют только при резке металлов с особыми свойствами. Прежде всего, для того чтобы иметь возможность поддерживать температуру воспламенения металла на разрезе, должен быть положительный тепловой баланс, т.е.больше тепла должно достичь материала, чем рассеяться в нем.

англ. Павел Матейчик 9000 3

Менеджер по работе с ключевыми клиентами Стигал

  • Что меняется в отрасли?

Станки плазменной резки претерпели революцию. Постоянно совершенствуясь, они с годами стали более надежными и точными. Стоит также отметить, что помимо технических свойств, не менее важной стала экология машин и несравненно лучшие условия охраны труда и техники безопасности на рабочем месте.

  • Какие параметры ожидают польские клиенты?

Всегда лучшее на мировом рынке. Польский клиент, прежде всего, очень требователен - выполнение его требований иногда является довольно сложной задачей. Нашими получателями являются небольшие слесари, компании из вентиляционной промышленности, котельные и сервисные компании, а также крупные промышленные корпорации, поэтому так важно, но также трудно идеально адаптироваться к каждой из этих компаний.

Необходимость - мать изобретения - широкий спектр требований компаний, заинтересованных в плазменных технологиях, привел к тому, что эти устройства, изначально предназначенные только для фигурной резки деталей в плоских листах, превратились в универсальные изделия, используемые для усовершенствования ряда процессов и заменить многие производственные ячейки.

Сегодня, помимо резки, заказчик может выбирать между фрезерованием, маркировкой, снятием фаски, сваркой или обработкой труб на одном станке – при необходимости.В условиях восстановления экономики цена отошла на второй план. Теперь важны качество и современность.

  • Как изменился рынок во времена экономического спада?

Хорошие производители сравнительно слабо ощутили экономический спад. Их можно сравнить с производителями роскошных автомобилей, которых кризис не затронул. Заказчик знает, что покупает устройство, которое соответствует мировым стандартам по качеству и технологиям и будет служить ему долгие годы.В соответствии с принципами свободного рынка покупатели сами устраняют некачественные товары, выбирая качество и марку.

Рис. 6. Станок для лазерной резки состоит из лазерной резонаторной камеры (1), системы зеркал (2, 3, 4) и собирающих линз (5) в режущей головке (6) (источник: ESAB)

Следовательно, металл должен иметь достаточно низкое значение теплопроводности. Кроме того, температура воспламенения металла в кислороде должна быть ниже температуры его плавления.Например, в случае со сталью определяющим для выполнения этого условия является содержание углерода - выше 1,5% температура вспышки выше температуры плавления. Поэтому кислородная резка в основном используется при обработке низкоуглеродистых сталей.

Также важно, чтобы температура плавления оксидов металлов была ниже точки плавления металла. В противном случае удалить их из щели струей кислорода невозможно. Тогда они увеличивают потери тепла и могут даже блокировать дальнейшую резку.Решением проблемы тугоплавких оксидов является добавление порошкообразного железа в режущий кислородный поток (рис. 4). Поскольку он подвергается быстрому окислению, он обеспечивает дополнительную энергию, необходимую для плавления тугоплавких оксидов.

ПЛАЗМЕННАЯ РЕЗКА

Этот метод использует плазменную дугу для резки на . Он образуется при ионизации газа, протекающего через электрическую дугу, тлеющую между электродами (неплавящимся электродом и разрезаемым материалом) (рис.5). Струя плазмы, формируемая в специально охлаждаемом сопле, достигает очень высокой температуры и, попадая на разрезаемый материал, локально расплавляет его, одновременно выдувая его остатки из созданного таким образом зазора.

Плазма

состоит из различных газов, включая, например, азот, аргон, водород, кислород и сухой сжатый воздух. Выбор газа зависит от специфики разрезаемого материала. Например, кислород иногда используется для резки углеродистой стали и низколегированной стали толщиной до 20 мм, а сжатый воздух используется для резки тонколистового металла с помощью режущих головок с ручным управлением.

Азот используется для резки, например, нержавеющей стали и алюминия, а смесь аргона и водорода используется для резки толстых материалов (до 100 мм), включая, например, нержавеющую сталь, алюминий, медь и титан. Доля водорода в смеси зависит от типа разрезаемого металла.

.

Смотрите также