Температура кипения металлов


Температуры кипения металлов при атмосферном давлении


Таблицы DPVA.ru - Инженерный Справочник



Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Тепловые величины: теплоемкость, теплопроводность, температуры кипения, плавления, пламени. Удельные теплоты сгорания и парообразования. Термические константы. Коэффициенты теплообмнена и расширения / / Температуры, кипения, плавления, прочие... Перевод единиц измерения температуры. Воспламеняемость. / / Температуры кипения = температуры конденсации  / / Температуры кипения металлов при атмосферном давлении

Поделиться:   

Температура кипения металлов при  атмосферном давлении. Таблица.

Газы Температура кипения, °С
Актиний, Ac 3300 °С
Алюминий, Al 2467 °С
Барий, Ba 1860 °С
Бериллий, Be 2470 °С
Висмут, Bi 1550 °С
Вольфрам, W 5657 °С
Галлий, Ga 2205 °С
Германий, Ge 2850 °С
Железо, Fe 3050 °С
Золото, Au 2807 °С
Индий, In 2000 °С
Иридий, Ir 4400 °С
Итрий, Y 3300 °С
Кадмий, Cd 767 °С
Кальций, Ca 1495 °С
Кобальт, Co 2960 °С
Литий, Li 1340 °С
Лантан, La 3450 °С
Магний , Mg 1095 °С
Медь, Cu 2567 °С
Никель, Ni 2900 °С
Олово, Sn 2620 °С
Осмий, Os 5027 °С
Палладий, Pd 2940 °С
Платина, Pt 3800 °С
Радий, Ra 1500 °С
Родий, Rh 3700 °С
Ртуть, Hg 357 °С
Рутений, Ru 4200 °С
Свинец, Pb 1475 °С
Серебро, Ag 2212 °С
Скандий, Sc 2850 °С
Стронций, Sr 1390 °С
Сурьма, Sb 1634 °С
Таллий, Tl 1475 °С
Хром, Cr 2672 °С
Цинк, Zn 906,2 °С
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.
Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator

Температура кипения и плавления металлов, температура плавления стали

Температура кипения и плавления металлов

В таблице представлена температура плавления металлов tпл, их температура кипения tк при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.

Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.

По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у ртути до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.

Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.

Приведем примеры температуры плавления металлов, широко применяемых в промышленности и в быту:

  • температура плавления алюминия 660,32 °С;
  • температура плавления меди 1084,62 °С;
  • температура плавления свинца 327,46 °С;
  • температура плавления золота 1064,18 °С;
  • температура плавления олова 231,93 °С;
  • температура плавления серебра 961,78 °С;
  • температура плавления ртути -38,83°С.

Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.

Плотность металлов в таблице находится в диапазоне от 0,534 до 22,59 г/см3, то есть самым легким металлом является литий, а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем плотность урана и даже плутония при комнатной температуре.

Теплопроводность металлов в таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.

Температура плавления стали

Представлена таблица значений температуры плавления стали распространенных марок. Рассмотрены стали для отливок, конструкционные, жаропрочные, углеродистые и другие классы сталей.

Температура плавления стали находится в диапазоне от 1350 до 1535°С. Стали в таблице расположены в порядке возрастания их температуры плавления.

Температура плавления стали — таблица
Сталь tпл, °С Сталь tпл, °С
Стали для отливок Х28Л и Х34Л 1350 Коррозионно-стойкая жаропрочная 12Х18Н9Т 1425
Сталь конструкционная 12Х18Н10Т 1400 Жаропрочная высоколегированная 20Х23Н13 1440
Жаропрочная высоколегированная 20Х20Н14С2 1400 Жаропрочная высоколегированная 40Х10С2М 1480
Жаропрочная высоколегированная 20Х25Н20С2 1400 Сталь коррозионно-стойкая Х25С3Н (ЭИ261) 1480
Сталь конструкционная 12Х18Н10 1410 Жаропрочная высоколегированная 40Х9С2 (ЭСХ8) 1480
Коррозионно-стойкая жаропрочная 12Х18Н9 1410 Коррозионно-стойкие обыкновенные 95Х18…15Х28 1500
Сталь жаропрочная Х20Н35 1410 Коррозионно-стойкая жаропрочная 15Х25Т (ЭИ439) 1500
Жаропрочная высоколегированная 20Х23Н18 (ЭИ417) 1415 Углеродистые стали 1535

Источники:

  1. Волков А. И., Жарский И. М. Большой химический справочник. — М: Советская школа, 2005. — 608 с.
  2. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  3. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.

Таблица температуры плавления (tпл) металлов и сплавов при нормальном атмосферном давлении

Металл или сплав tпл. С
Алюминий 660,4
Вольфрам 3420
Германий 937
Дуралюмин ~650
Железо 1539
Золото 1064?4
Инвар 1425
Иридий 2447
Калий 63,6
Карбиды гафния 3890
ниобия 3760
титана 3150
циркония 3530
Константин ~1260
Кремний 1415
Латунь ~1000
Легкоплавкий сплав 60,5
Магний 650
Медь 1084,5
Натрий 97,8
Нейзильбер ~1100
Никель 1455
Нихром ~1400
Олово 231,9
Осмий 3030
Платина 17772
Ртуть -
38,9
Свинец 327,4
Серебро 961,9
Сталь 1300-1500
Фехраль ~1460
Цезий 28,4
Цинк 419,5
Чугун 1100-1300

Вернуться в раздел аналитики

Запись опубликована автором admin в рубрике Полезные материалы. Добавьте в закладки постоянную ссылку.

Температура плавления и кипения различных веществ

Вещество

Температуры плавления и кипения, °С

Ag

пл. 962, кип. 2170

Ag2O

разл. > 160

Al

пл. 660, кип. 2500

Al2O3

пл. 2053, кип. > 3000

As

возг. 615, пл. 817

AsH3

пл.- 117, кип.- 62

At

пл. 244, кип. 309

Au

пл. 1064, кип. 2947

B

пл. 2075, кип. 3700

B2O3

пл. 450, кип. ок. 2000

Ba

пл. 727, кип. ок. 1860

BaO

пл. ок. 2020

Be

пл. 1287, кип. 2507

BeO

пл. 2580, кип. 4260

Bi

пл. 271, кип. 1564

Bi2O3

пл. 825, кип. 1890

C (графит)

пл. 4800 [см. примечание]

C (алмаз)

1800 ® C (графит)

CH4

пл.- 182, кип.- 162

CO

пл.- 205, кип.- 192

CO2

возг. - 78

Ca

пл. 842, кип. 1495

CaO

пл. ок. 2614, кип. 2850

Cd

пл. 321, кип. 767

CdO

возг. ок. 900, разл.

Cl2

пл.- 101, кип.- 34

ClO2

пл.- 60, кип. +11

Cl2O

пл.- 116, кип. +2

Cl2O6

пл. 4, разл. > 20

Cl2O7

пл.- 90, кип. +83

Сo

пл. 1494, кип. 2960

Cr

пл. 1890, кип. 2680

Cr2O3

пл. 2340, кип. 3000

Cs

пл. 29, кип. 668

Cu

пл. 1085, кип. 2540

CuO

разл. 1026

Cu2O

пл. 1240, кип. 1800

F2

пл.- 220, кип.- 188

Fe

пл. 1539, кип. ок. 3200

FeO

пл. 1368

Fe2O3

разл. 1390

Fr

пл. 21, кип. 660

Ga

пл. 30, кип. 2403

Ga2O3

пл. ок. 1725

Ge

пл. 937, кип. ок. 2850

GeH4

пл.- 166, кип.- 89

H2

пл.- 259, кип.- 253

HBr

пл.- 87, кип.- 67

HCl

пл.- 114, кип.- 85

HF

пл.- 84, кип. +20

HI

пл.- 51, кип.- 35

HN3

пл.- 80, кип. +36

HNO3

пл.- 42, кип. +83, разл.

H2O

пл. 0, кип. 100

H2O2

пл.- 0,4, разл. +150

H(PH2O2)

пл. 27, разл. 140

H2(PHO3)

пл. 74, разл. 200

H3PO4

пл. 42, разл. 150

H4P2O7

пл. 61, разл. 300

H2S

пл.- 86, кип.- 60

H2SO4

пл. 10, кип. 296, разл.

H2Se

пл.- 66, кип.- 42

H2SeO3

пл. и разл. 70

H2SeO4

пл. 62

H2Te

пл.- 51, кип.- 2, разл.

H2TeO3

40 ® TeO2

H6TeO6

пл. 136, 220 ® TeO3

Hg

пл.- 39, кип. +357

HgO

разл. > 400

I2

пл. 114, кип. 184

I2O5

разл. 275-350

In

пл. 157, кип. 2024

In2O3

пл. 1910, кип. ок. 3300

K

пл. 64, кип. 760

Li

пл. 180, кип. 1337

Mg

пл. 648, кип. 1095

MgO

пл. 2825, кип. 3600

Mn

пл. 1245, кип. 2080

MnO

пл. 1780

MnO2

разл. > 535

Mn2O3

940 ® (MnIIMn2III)O4

Mn2O7

пл. 6, разл. > 55

Mo

пл. 2620, кип. 4630

N2

пл.- 210, кип.- 196

NH3

пл.- 78, кип.- 33

N2H4

пл. 2, кип. 114

NH2OH

пл. 32, разл. > 100

NO

пл.- 164, кип.- 152

NO2

< 21 ® N2O4

N2O

пл.- 91, кип.- 89

N2O3

кип.- 40, разл. > +5

N2O4

пл.- 11, кип. 21, разл.

N2O5

пл. 41, разл.

Na

пл. 98, кип. 886

Ni

пл. 1455, кип. ок. 2900

NiO

пл. 1955

O2

пл.- 219, кип.- 183

O3

пл.- 193, кип.- 112

OF2

пл.- 224, кип.- 145

P (красный)

возг. 416

P4 (белый)

пл. 44, кип. 287

PH3

пл.- 134, кип.- 87

P4O6

пл. 24, кип. 175

P4O10

возг. 359, пл. 422

Pb

пл. 328, кип. 1745

PbO

пл. 886, кип. 1535

PbO2

разл. > 344

(Pb2IIPbIV)O4

550 ® PbO

Ra

пл. 969, кип. 1536

Rb

пл. 39, кип. 696

Re

пл. 3190, кип. ок. 5900

S8 (монокл.)

пл. 119, кип. 445

S8 (ромб.)

96 ® S8 (монокл.)

SO2

пл.- 75, кип.- 10

SO3

пл. 17, кип. 45

Sb

пл. 631, кип. 1634

SbH3

пл. - 94, кип. - 18

Sb2O3

пл. 655, кип. 1456

Se

пл. 217, кип. 685

SeO2

возг. 315, пл. 340

SeO3

пл. 118, разл. > 185

Si

пл. 1415, кип. ок. 3250

SiH4

пл.- 185, кип.- 112

SiO2 (кварц)

пл. 1550, кип. 2950

Sn

пл. 232, кип. 2620

SnO

пл. 1040, кип. 1425

SnO2

пл. 1630, кип. 2500

Sr

пл. 768, кип. 1390

Tc

пл. 2250, кип.ок. 4600

Te

пл. 450, кип. 990

TeO2

пл. 733, кип. 1257

TeO3

разл. > 400

Ti

пл. 1668, кип. 3260

TiO2

пл. 1870, кип. ок. 3000

Tl

пл. 304, кип. 1457

Tl2O

пл. 303, кип. ок. 1100

V

пл. 1920, кип. 3450

W

пл. 3387, кип. ок. 5680

Zn

пл. 420, кип. 906

ZnO

возг. 1725, разл.

 

Сокращения:
возг. - возгонка; кип. - кипение; ок. - около;
пл. - плавление; разл. - разложение; ® - переход одного вещества в другое


Примечание: определение температуры плавления графита является очень важной, но очень сложной научной проблемой, которой занимаются во всем мире. В данном справочнике мы приводим значение, которое, исходя из обзора Савватимского Александра Ивановича, зав. лаб. электровзрывных процессов ОИВТ РАН, является в настоящее время наиболее обоснованным и полученным с помощью самых современных методов. Обзор и описание методов см. в работах:
Савватимский А.И."Плавление графита и жидкий углерод" УФН том 173 №12 стр.1371

A. I. Savvatimskiy. "Liquid carbon density and resistivity" J. Phys.: Condens. Matter 20 (2008) 114112

Korobenko V.N., Savvatimskiy A.I. "Graphite melting temperature" Electronic journal “INVESTIGATED IN RUSSIA” 2161

Примечание ко всем таблицам свойств: источниками справочных данных являются публикации в Интернете, поэтому они не могут считаться «официальными» и «абсолютно точными». Как правило, в Интернет справочниках не приводятся ссылки на научные работы, являющиеся основой опубликованных данных. Мы стараемся брать информацию из наиболее надежных научных сайтов. Однако если кого-то интересуют ссылки на эксперименты, советуем произвести самостоятельно углубленный поиск в Интернете. Будем признательны за любые комментарии к нашим справочным таблицам, а особенно за уточнения существующей информации или дополнение справочных данных.

Какова температура плавления температура кипения вещества. Температура плавления металлов и их сплавов

Почти все металлы при нормальных условиях представляют собой твердые вещества. Но при определенных температурах они могут изменять свое агрегатное состояние и становиться жидкими. Давайте узнаем, какая температура плавления металла самая высокая? Какая самая низкая?

Температура плавления металлов

Большая часть элементов периодической таблицы относится к металлам. В настоящее время их насчитывается примерно 96. Всем им необходимы разные условия, чтобы превратиться в жидкость.

Порог нагревания твердых кристаллических веществ, превысив который они становятся жидкими, называется температурой плавления. У металлов она колеблется в пределах нескольких тысяч градусов. Многие из них переходят в жидкость при относительно большом нагревании. Благодаря этому они являются распространенным материалом для производства кастрюль, сковородок и других кухонных приборов.

Средние температуры плавления имеют серебро (962 °С), алюминий (660,32 °С), золото (1064,18 °С), никель (1455 °С), платина (1772 °С) и т.д. Выделяют также группу тугоплавких и легкоплавких металлов. Первым, чтобы превратиться в жидкость, нужно больше 2000 градусов Цельсия, вторым - меньше 500 градусов.

К легкоплавким металлам обычно относят олово (232 °C), цинк (419 °C), свинец (327 °C). Однако у некоторых из них температуры могут быть еще ниже. Например, франций и галлий плавятся уже в руке, а цезий можно греть только в ампуле, ведь от кислорода он воспламеняется.

Самые низкие и высокие температуры плавления металлов представлены в таблице:

Вольфрам

Самая высокая температура плавления - у металла вольфрама. Выше него по этому показателю стоит только неметалл углерод. Вольфрам представляет собой светло-серое блестящее вещество, очень плотное и тяжелое. Он кипит при 5555 °C, что почти приравнивается к температуре фотосферы Солнца.

При комнатных условиях он слабо реагирует с кислородом и не подвергается коррозии. Несмотря на свою тугоплавкость, он довольно пластичен и поддается ковке уже при нагревании до 1600 °C. Эти свойства вольфрама используют для нитей накаливания в лампах и кинескопах электродов для сварки. Большую часть добытого металла сплавляют со сталью, чтобы повысить ее прочность и твердость.

Широкое применение вольфрам имеет в военной сфере и технике. Он незаменим для изготовления боеприпасов, брони, двигателей и наиболее важных частей военного транспорта и самолетов. Из него также делают хирургические инструменты, ящики для хранения радиоактивных веществ.

Ртуть

Ртуть - единственный металл, температура плавления которого имеет минусовое значение. К тому же это один из двух химических элементов, простые вещества которых при нормальных условиях, существуют в виде жидкостей. Интересно, что кипит металл при нагревании до 356,73 °C, а это намного выше температуры его плавления.

Имеет серебристо-белый цвет и ярко выраженный блеск. Она испаряется уже при комнатных условиях, конденсируясь в небольшие шарики. Металл очень токсичен. Он способен накапливается во внутренних органах человека, вызывая болезни головного мозга, селезенки, почек и печени.

Ртуть - один из семи первых металлов, о которых узнал человек. В Средние века она считалась главным алхимическим элементом. Несмотря на ядовитость, когда-то ее применяли в медицине в составе зубных пломб, а также как лекарство от сифилиса. Сейчас ртуть почти полностью исключили из медицинских препаратов, но широко используют ее в измерительных приборах (барометрах, манометрах), для изготовления ламп, переключателей, дверных звонков.

Сплавы

Чтобы изменить свойства того или иного металла, его сплавляют с другими веществами. Так, он может не только приобрести большую плотность, прочность, но и снизить или повысить температуру плавления.

Сплав может состоять из двух или больше химических элементов, но хотя бы один из них должен быть металлом. Такие «смеси» очень часто используют в промышленности, ведь они позволяют получить именно те качества материалов, которые необходимы.

Температура плавления металлов и сплавов зависит от чистоты первых, а также от пропорций и состава вторых. Для получения легкоплавких сплавов чаще всего используют свинец, ртуть, таллий, олово, кадмий, индий. Те, в составе которых находится ртуть, называются амальгамами. Соединение натрия, калия и цезия в соотношении 12%/47%/41% становится жидкостью уже при минус 78 °C , амальгама ртути и таллия - при минус 61°C. Самым тугоплавким материалом является сплав тантала и карбидов гафния в пропорциях 1:1 с температурой плавления 4115 °C.

Теплофизические характеристики, которые необходимо учитывать при подборе стоматологических материалов

Теплофизические свойства материалов определяются следующими основными показателями :

§ температурой плавления;

§ температурой кипения;

§ коэффициентом теплопроводности;

§ коэффициентом температуропроводности;

§ коэффициентами линейного и объемного расширения.

Переход кристаллического вещества из твердого состояния в жидкое называется плавлением , а переход вещества из жидкого состояния в твердое отвердеванием иликристаллизацией . Эти переходы происходят при температуре, которая называется температурой плавления .

Количество теплоты Q , необходимое для превращения данной массы твердого тела в жидкость в процессе его плавления, или количество теплоты, которое она выделит в процессе кристаллизации можно определить по формуле:

где l удельная теплота плавления.Удельная теплота плавления l численно равна количеству теплоты, необходимому для превращения единицы массы этого вещества из твердого состояния в жидкое при температуре плавления. Единица измерения l в СИ - Дж/кг .

Знание температуры плавления материалов, применяемых в стоматологии, позволяет подобрать нужный источник теплоты для плавления. Например, для плавления золота можно использовать бензиновую горелку, а для плавления нержавеющей стали нужна электрическая дуга или электропечь.

Для пайки деталей протезов припой должен иметь более низкую температуру плавления, чем сплавы металлов, из которых изготавливают протез, чтобы он не подплавлялся. У сплавов металлов, как правило, более низкая температура плавления, чем у составляющих их компонентов.

Переход вещества из жидкого состояния в газообразное называется парообразованием, а переход вещества из газообразного состояния в жидкое - конденсацией . Парообразование, которое происходит только со свободной поверхности жидкости, граничащей с газообразной средой или вакуумом, называется испарением . Частным случаем испарения является кипение . Кипение это процесс интенсивного парообразования не только со свободной поверхности, но и по всему объему жидкости, происходящий при одной, определенной для данной жидкости температуре, которая называется температурой кипения .

Количество теплоты Q , необходимое для превращения данной массы m жидкости в пар в процессе ее кипения, или количество теплоты, которое она выделит в процессе конденсации можно определить по формуле:

где r - удельная теплота парообразования. Удельная теплота парообразования r – величина, численно равная количеству теплоты, необходимому для превращения в пар в процессе кипения единицы массы жидкости при температуре кипения. Единица измерения r в СИ - Дж/кг.

Температуру кипения металлов необходимо учитывать при изготовлении протезов. Вследствие различия температур кипения может произойти улетучивание наиболее легкоплавких компонентов сплавов металлов, что приведет к изменению их свойств. Так, при изготовлении припоев, содержащих кадмий и цинк, имеющих температуру кипения, соответственно, 778 и 918°С, при перегревании может произойти частичная их утрата и припой окажется тугоплавким.

3. Теплоёмкость и удельная теплоёмкость материалов

Теплоемкостью тела называют отношение количества теплоты Q, необходимого для повышения его температуры от значения Т 1 до значения Т 2 , к разности этих температур DТ = Т 2 – T 1:

Теплоемкость характеризует то количество теплоты, которое нужно сообщить телу, чтобы нагреть его на 1 К (при охлаждении на 1 К тело выделяет то же количество теплоты, что и поглощает при нагревании).

Нагревая тела с одинаковыми массами, но состоящие из различных веществ, можно обнаружить, что для повышения их температуры на 1 К требуются различные количества теплоты; следовательно, теплоемкость тела зависит от его природы . Теплоемкость тела также пропорциональна его массе. Поэтому характеристикой тепловых свойств вещества является его удельная теплоемкостьс - величина, равная отношению теплоемкости тела к его массе:

. (4)

В СИ удельная теплоемкость вещества выражается в Дж/(кг × К).

Зная теплоемкость вещества, можно определить количество теплоты, необходимое для нагревания тела массой m от температуры T 1 до температуры Т 2:

Q = cmDT = cm(T 2 – T 1). (5)

Необходимость учёта теплоемкостей различных материалов в стоматологической практике связана с довольно значительным различием теплоемкостей тканей зуба и применяемых материалов. Наличие в ротовой полости материалов с различной теплоемкостью сопровождается неприятными ощущениями, и в ряде случаев может приводить к возникновению различных побочных эффектов (выкрашивание пломб, воспалительные процессы и т.д.).

Кипит – вода, плавится – металл, в крайнем случае – стекло… такие представления привычны с детства. Но, оказывается, и вода может плавиться, и металл кипеть – словом эти понятия могут быть применены к любому веществу.

Как все мы помним из школьного курса физики, любое вещество может пребывать в одном из трёх агрегатных состояний: твердом, жидком и газообразном (правда, выделяют еще и другие состояния вещества – плазма, жидкие кристаллы – но в контексте рассматриваемого вопроса они нас интересовать не будет).

В каком бы состоянии ни пребывало вещество, оно будет состоять из одних и тех молекул, разница лишь в том, как они расположены и как «себя ведут». В твердом теле они совершают лишь небольшие колебания, благодаря чему твердое тело сохраняет форму и объем. Твердые тела подразделяются на кристаллические и аморфные. В кристаллических телах молекулы располагаются в строгом порядке и периодично, образуя кристаллическую решетку в виде многогранника. Аморфное тело граничит с жидкостью, но вязкость этой «жидкости» очень велика, поэтому такое тело все же обладает свойствами твердого.

В жидкости молекулы не имеют определенного расположения, но и свободы передвижения лишены, притяжение удерживает их вместе, поэтому жидкое тело сохраняет объем, но не форму. В газообразном веществе молекулы хаотично движутся, слабо взаимодействуют, и такое вещество ни объема, ни формы не может сохранить.

Как уже говорилось, в любом из трех этих состояний может находиться любое вещество – все зависит лишь от двух факторов: давления и температуры. Например, в условиях Марса нет жидкой воды, на Земле достаточно сложно получить жидкий кислород, но все-таки возможно, а вот металлический водород не получится сделать ни в одной земной лаборатории – зато на Юпитере он есть. Переходы между этими состояниями – т.н. фазовые переходы – именуются кипением и плавлением.

Кипение – это переход от жидкого состояния к газообразному. Такой переход происходит всегда за счет того, что молекулы, находящиеся на поверхности жидкости, подвергаются воздействию не только «собратьев» из жидкости, но и молекул воздуха. У некоторых молекул жидкости кинетической энергии больше, чем у других, и они покидают жидкость, а у оставшихся молекул энергии в целом меньше, поэтому жидкость становится холоднее. Так постепенно может «уйти» вся жидкость, это называется испарением. При кипении же испарение происходит не только с поверхности жидкости, но и во всем ее объеме – благодаря образующимся в жидкости пузырькам пара. Такой фазовый переход происходит намного быстрее любая хозяйка знает, что воде нужно больше времени на высыхание, чем на выкипание). Если испарение происходит при любой температуре, то кипение – только при повышении температуры до определенного уровня (у каждого вещества температура своя).

Переход вещества из кристаллического твердого тела в жидкое состояние называется плавлением. Следует подчеркнуть: именно из кристаллического, к аморфным телам это понятие не применяется. Так что выражение «плавленый сыр» с точки зрения физики лишена смысла, поскольку сыр – как раз аморфное тело, а вот лёд плавиться может (что не очевидно для многих далеких от физики людей).

Как и кипение, плавление происходит при повышении температуры до определенного уровня. При нормальном давлении самая высокая температуры плавления у углерода (4500 градусов), из металлов – у вольфрама (3422 градуса). Самой низкой температурой плавления при нормальном давлении обладает гелий. Она настолько низкая, что ее… вообще нет! Даже при температуре, близкой к абсолютному нулю, он остается жидким, не переходя в твердое состояние – для этого нужно давление более 25 атмосфер.

Не все вещества при нормальном давлении проходят все эти три состояния и фазовых перехода. Некоторые из них переходят из твердого состояния в газообразное, минуя стадию жидкости – этот процесс называется возгонкой, или сублимацией.

Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Вконтакте

Наиболее низкая температура плавления у ртути - она плавится даже при -39 °C, самая высокая у вольфрама - 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

Как происходит процесс

Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой - плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты . Воздействие при этом примерно одинаковое.

Когда происходит нагревание , усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки , сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

  1. легкоплавкие - до 600 °C: свинец, цинк, олово;
  2. среднеплавкие - от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие - от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина - градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Таблица характеристик

Металлы и сплавы - непременная основа для ковки , литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота , ограды из чугуна, ножи из стали или браслеты из меди) , для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

  1. алюминий - 660 °C;
  2. температура плавления меди - 1083 °C;
  3. температура плавления золота - 1063 °C;
  4. серебро - 960 °C;
  5. олово - 232 °C. Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;
  6. свинец - 327 °C;
  7. температура плавления железо - 1539 °C;
  8. температура плавления стали (сплав железа и углерода) - от 1300 °C до 1500 °C. Она колеблется в зависимости от насыщенности стали компонентами;
  9. температура плавления чугуна (также сплав железа и углерода) - от 1100 °C до 1300 °C;
  10. ртуть - -38,9 °C.

Как понятно из этой части таблицы, самый легкоплавкий металл - ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия - 2519 °C , у железа - 2900 °C, у меди - 2580 °C, у ртути - 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов - у рения - 5596 °C . Наибольшая температура кипения - у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов . Самым лёгким металлом является литий, самым тяжёлым - осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа - очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах - это теплопроводность металлов . Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл - серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

Температура плавления меди – при какой температуре плавится медь

Благодаря тому, что температура плавления меди достаточно невысокая, этот металл стал одним из первых, которые древние люди начали использовать для изготовления различных инструментов, посуды, украшений и оружия. Самородки меди или медную руду можно было расплавить на костре, что, собственно, и делали наши далекие предки.

Этап плавления меди

Несмотря на активное применение человечеством с древних времен, медь не является самым распространенным природным металлом. В этом отношении она значительно уступает остальным элементам и занимает в их ряду только 23-е место.

Как плавили медь наши предки

Благодаря невысокой температуре плавления меди, составляющей 1083 градуса Цельсия, наши далекие предки не только успешно получали из руды чистый металл, но и изготавливали различные сплавы на его основе. Чтобы получить такие сплавы, медь нагревали и доводили до жидкого расплавленного состояния. Затем в такой расплав просто добавляли олово или выполняли его восстановление на поверхности расплавленной меди, для чего использовалась оловосодержащая руда (касситерит). По такой технологии получали бронзу – сплав, обладающий высокой прочностью, который использовали для изготовления оружия.

Какие процессы происходят при плавлении меди

Что характерно, температуры плавления меди и сплавов, полученных на ее основе, отличаются. При добавлении в медь олова, имеющего меньшую температуру плавления, получают бронзу с температурой плавления 930–1140 градусов Цельсия. А сплав меди с цинком (латунь) плавится при 900–10500 Цельсия.

Во всех металлах в процессе плавления происходят одинаковые процессы. При получении достаточного количества теплоты при нагревании кристаллическая решетка металла начинает разрушаться. В тот момент, когда он переходит в расплавленное состояние, его температура не повышается, хотя процесс передачи ему теплоты при помощи нагрева не прекращается. Температура металла начинает вновь повышаться только тогда, когда он весь перейдет в расплавленное состояние.

Диаграмма состояния системы хром-медь

При охлаждении происходит противоположный процесс: сначала температура резко снижается, затем на некоторое время останавливается на постоянной отметке. После того, как весь металл перейдет в твердую фазу, температура снова начинает снижаться до полного его остывания.

Как плавление, так и обратная кристаллизация меди, связаны с параметром удельной теплоты. Данный параметр характеризует удельное количество теплоты, которая требуется для того, чтобы перевести металл из твердого состояния в жидкое. При кристаллизации металла такой параметр характеризует количество теплоты, которое он отдает при остывании.

Более подробно узнать о плавлении меди помогает фазовая диаграмма, показывающая зависимость состояния металла от температуры. Такие диаграммы, которые можно составить для любых металлов, помогают изучать их свойства, определять температуры, при которых они кардинально меняют свои свойства и текущее состояние.

Кроме температуры плавления, у меди есть и температура кипения, при которой расплавленный металл начинает выделять пузырьки, наполненные газом. На самом деле никакого кипения меди не происходит, просто этот процесс внешне очень его напоминает. Довести до такого состояния ее можно, если нагреть до температуры 2560 градусов.

Как понятно из всего вышесказанного, именно невысокую температуру плавления меди можно назвать одной из основных причин того, что сегодня мы можем использовать этот металл, обладающий многими уникальными характеристиками.

Температура плавления различных веществ таблица. Температуры кипения и плавления

Каждый металл и сплав имеет собственный уникальный набор физических и химических свойств, среди которых не последнее место занимает температура плавления. Сам процесс означает переход тела из одного агрегатного состояния в другое, в данном случае, из твердого кристаллического состояния в жидкое. Чтобы расплавить металл, необходимо подводить к нему тепло до достижения температуры плавления. При ней он все еще может оставаться в твердом состоянии, но при дальнейшем воздействии и повышении тепла металл начинает плавиться. Если температуру понизить, то есть отвести часть тепла, элемент затвердеет.

Самая высокая температура плавления среди металлов принадлежит вольфраму : она составляет 3422С о, самая низкая - у ртути: элемент плавится уже при - 39С о. Определить точное значение для сплавов, как правило, не представляет возможности: оно может значительно колебаться в зависимости от процентного соотношения компонентов. Их обычно записывают в виде числового промежутка.

Как происходит

Плавление всех металлов происходит примерно одинаково - при помощи внешнего или внутреннего нагревания. Первый осуществляется в термической печи, для второго используют резистивный нагрев при пропускании электрического тока или индукционный нагрев в высокочастотном электромагнитном поле. Оба варианта воздействуют на металл примерно одинаково.

При увеличении температуры увеличивается и амплитуда тепловых колебаний молекул , возникают структурные дефекты решетки, выражающиеся в росте дислокаций, перескоке атомов и других нарушениях. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. В это же время происходит образование квази-жидкого слоя на поверхности тела. Период разрушения решетки и накопления дефектов называется плавлением.

В зависимости от температуры плавления металлы делятся на:

В зависимости от температуры плавления выбирают и плавильный аппарат . Чем выше показатель, тем прочнее он должен быть. Узнать температуру нужного вам элемента можно из таблицы.

Еще одной немаловажной величиной является температура кипения. Это величина, при которой начинается процесс кипения жидкостей, она соответствует температуре насыщенного пара, который образуется над плоской поверхностью кипящей жидкости. Обычно она почти в два раза больше, чем температура плавления.

Обе величины принято приводить при нормальном давлении. Между собой они прямопропорциональны .

  1. Увеличивается давление - увеличится величина плавления.
  2. Уменьшается давление - уменьшается величина плавления.

Таблица легкоплавких металлов и сплавов (до 600С о)

Таблица среднеплавких металлов и сплавов (от 600С о до 1600С о)

Почти все металлы при нормальных условиях представляют собой твердые вещества. Но при определенных температурах они могут изменять свое агрегатное состояние и становиться жидкими. Давайте узнаем, какая температура плавления металла самая высокая? Какая самая низкая?

Температура плавления металлов

Большая часть элементов периодической таблицы относится к металлам. В настоящее время их насчитывается примерно 96. Всем им необходимы разные условия, чтобы превратиться в жидкость.

Порог нагревания твердых кристаллических веществ, превысив который они становятся жидкими, называется температурой плавления. У металлов она колеблется в пределах нескольких тысяч градусов. Многие из них переходят в жидкость при относительно большом нагревании. Благодаря этому они являются распространенным материалом для производства кастрюль, сковородок и других кухонных приборов.

Средние температуры плавления имеют серебро (962 °С), алюминий (660,32 °С), золото (1064,18 °С), никель (1455 °С), платина (1772 °С) и т.д. Выделяют также группу тугоплавких и легкоплавких металлов. Первым, чтобы превратиться в жидкость, нужно больше 2000 градусов Цельсия, вторым - меньше 500 градусов.

К легкоплавким металлам обычно относят олово (232 °C), цинк (419 °C), свинец (327 °C). Однако у некоторых из них температуры могут быть еще ниже. Например, франций и галлий плавятся уже в руке, а цезий можно греть только в ампуле, ведь от кислорода он воспламеняется.

Самые низкие и высокие температуры плавления металлов представлены в таблице:

Вольфрам

Самая высокая температура плавления - у металла вольфрама. Выше него по этому показателю стоит только неметалл углерод. Вольфрам представляет собой светло-серое блестящее вещество, очень плотное и тяжелое. Он кипит при 5555 °C, что почти приравнивается к температуре фотосферы Солнца.

При комнатных условиях он слабо реагирует с кислородом и не подвергается коррозии. Несмотря на свою тугоплавкость, он довольно пластичен и поддается ковке уже при нагревании до 1600 °C. Эти свойства вольфрама используют для нитей накаливания в лампах и кинескопах электродов для сварки. Большую часть добытого металла сплавляют со сталью, чтобы повысить ее прочность и твердость.

Широкое применение вольфрам имеет в военной сфере и технике. Он незаменим для изготовления боеприпасов, брони, двигателей и наиболее важных частей военного транспорта и самолетов. Из него также делают хирургические инструменты, ящики для хранения радиоактивных веществ.

Ртуть

Ртуть - единственный металл, температура плавления которого имеет минусовое значение. К тому же это один из двух химических элементов, простые вещества которых при нормальных условиях, существуют в виде жидкостей. Интересно, что кипит металл при нагревании до 356,73 °C, а это намного выше температуры его плавления.

Имеет серебристо-белый цвет и ярко выраженный блеск. Она испаряется уже при комнатных условиях, конденсируясь в небольшие шарики. Металл очень токсичен. Он способен накапливается во внутренних органах человека, вызывая болезни головного мозга, селезенки, почек и печени.

Ртуть - один из семи первых металлов, о которых узнал человек. В Средние века она считалась главным алхимическим элементом. Несмотря на ядовитость, когда-то ее применяли в медицине в составе зубных пломб, а также как лекарство от сифилиса. Сейчас ртуть почти полностью исключили из медицинских препаратов, но широко используют ее в измерительных приборах (барометрах, манометрах), для изготовления ламп, переключателей, дверных звонков.

Сплавы

Чтобы изменить свойства того или иного металла, его сплавляют с другими веществами. Так, он может не только приобрести большую плотность, прочность, но и снизить или повысить температуру плавления.

Сплав может состоять из двух или больше химических элементов, но хотя бы один из них должен быть металлом. Такие «смеси» очень часто используют в промышленности, ведь они позволяют получить именно те качества материалов, которые необходимы.

Температура плавления металлов и сплавов зависит от чистоты первых, а также от пропорций и состава вторых. Для получения легкоплавких сплавов чаще всего используют свинец, ртуть, таллий, олово, кадмий, индий. Те, в составе которых находится ртуть, называются амальгамами. Соединение натрия, калия и цезия в соотношении 12%/47%/41% становится жидкостью уже при минус 78 °C , амальгама ртути и таллия - при минус 61°C. Самым тугоплавким материалом является сплав тантала и карбидов гафния в пропорциях 1:1 с температурой плавления 4115 °C.

Температура плавления, наряду с плотностью, относится к физическим характеристикам металлов . Температура плавления металла - температура, при которой металл переходит из твердого состояния, в котором находится в нормальном состоянии (кроме ртути), в жидкое состояние при нагревании. При плавлении объем металла практически не изменяется, поэтому на температуру плавления нормальное атмосферное давление не влияет .

Температура плавления металлов находится в диапазоне от -39 градусов Цельсия до +3410 градусов . Для большинства металлов температура плавления высокая, однако, некоторые металлы можно расплавить в домашних условиях при нагревании на обычной горелке (олово, свинец).

Классификация металлов по температуре плавления

  1. Легкоплавкие металлы , температура плавления которых колеблется до 600 градусов Цельсия, например цинк, олово, висмут .
  2. Среднеплавкие металлы , которые плавятся при температуре от 600 до 1600 градусов Цельсия: такие как алюминий, медь, олово, железо .
  3. Тугоплавкие металлы , температура плавления которых достигает более 1600 градусов Цельсия - вольфрам, титан, хром и др.
  4. - единственный металл, находящийся при обычных условиях (нормальное атмосферное давление, средняя температура окружающей среды) в жидком состоянии. Температура плавления ртути составляет порядка -39 градусов по Цельсию.

Таблица температур плавления металлов и сплавов

Металл

Температура плавления,

градусов Цельсия

Алюминий 660,4
Вольфрам 3420
Дюралюмин ~650
Железо 1539
Золото 1063
Иридий 2447
Калий 63,6
Кремний 1415
Латунь ~1000
Легкоплавкий сплав 60,5
Магний 650
Медь 1084,5
Натрий 97,8
Никель 1455
Олово 231,9
Платина 1769,3
Ртуть –38,9
Свинец 327,4
Серебро 961,9
Сталь 1300-1500
Цинк 419,5
Чугун 1100-1300

При плавлении металла для изготовления металлических изделий-отливок от температуры плавления зависит выбор оборудования, материала для формовки металла и др. Следует также помнить, что при легировании металла другими элементами температура плавления чаще всего снижается .

Интересный факт

Не стоит путать понятия "температура плавления металла" и "температура кипения металла" - для многих металлов эти характеристики существенно отличаются: так, серебро плавится при температуре 961 градус по Цельсию, а закипает только при достижении нагрева до 2180 градусов.

Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Вконтакте

Наиболее низкая температура плавления у ртути - она плавится даже при -39 °C, самая высокая у вольфрама - 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

Как происходит процесс

Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой - плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты . Воздействие при этом примерно одинаковое.

Когда происходит нагревание , усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки , сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

  1. легкоплавкие - до 600 °C: свинец, цинк, олово;
  2. среднеплавкие - от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие - от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина - градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Таблица характеристик

Металлы и сплавы - непременная основа для ковки , литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота , ограды из чугуна, ножи из стали или браслеты из меди) , для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

  1. алюминий - 660 °C;
  2. температура плавления меди - 1083 °C;
  3. температура плавления золота - 1063 °C;
  4. серебро - 960 °C;
  5. олово - 232 °C. Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;
  6. свинец - 327 °C;
  7. температура плавления железо - 1539 °C;
  8. температура плавления стали (сплав железа и углерода) - от 1300 °C до 1500 °C. Она колеблется в зависимости от насыщенности стали компонентами;
  9. температура плавления чугуна (также сплав железа и углерода) - от 1100 °C до 1300 °C;
  10. ртуть - -38,9 °C.

Как понятно из этой части таблицы, самый легкоплавкий металл - ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия - 2519 °C , у железа - 2900 °C, у меди - 2580 °C, у ртути - 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов - у рения - 5596 °C . Наибольшая температура кипения - у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов . Самым лёгким металлом является литий, самым тяжёлым - осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа - очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах - это теплопроводность металлов . Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл - серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

Самое удивительное и благостное для живой природы свойство воды - это ее способность при "нормальных" условиях быть жидкостью. Молекулы очень похожих на воду соединений (например, молекулы h3S или h3Se) намного тяжелее, а образуют при тех же условиях газ. Тем самым вода как будто противоречит закономерностям таблицы Менделеева, которая, как известно, предсказывает, когда, где и какие свойства веществ будут близки. В нашем случае из таблицы следует, что свойства водородных соединений элементов (называемых гидридами), расположенных в одних и тех же вертикальных столбцах, с ростом массы атомов должны изменяться монотонно. Кислород - элемент шестой группы этой таблицы. В этой же группе находятся сера S (с атомным весом 32), селен Se (с атомным весом 79), теллур Te (с атомным весом 128) и поллоний Po (с атомным весом 209). Следовательно, свойства гидридов этих элементов должны меняться монотонно при переходе от тяжелых элементов к более легким, т.е. в последовательности h3Po > h3Te > h3Se > h3S > h3O. Что и происходит, но только с первыми четырьмя гидридами. Например, температуры кипения и плавления растут при увеличении атомного веса элементов. На рисунке крестиками отмечены температуры кипения этих гидридов, а кружочками - температуры плавления.

Как видно, при уменьшении атомного веса температуры снижаются совершенно линейно. Область существования жидкой фазы гидридов становится все более "холодной", и если бы гидрид кислорода Н2О был нормальным соединением, похожим на своих соседей по шестой группе, то жидкая вода существовала бы в диапазоне от -80° С до -95° С. При более высоких температурах Н2О всегда была бы газом. К счастью для нас и всего живого на Земле, вода аномальна, она не признает периодической закономерности а следует своим законам.

Объясняется это довольно просто - большая часть молекул воды соединена водородными связями. Именно этими связями отличается вода от жидких гидридов h3S, h3Se и h3Te. Если бы их не было, то вода кипела бы уже при минус 95 °C. Энергия водородных связей достаточно велика, и разорвать их можно лишь при значительно более высокой температуре. Даже в газообразном состоянии большое число молекул h3O сохраняет свои водородные связи, объединяясь в димеры (h3O)2. Полностью водородные связи исчезают только при температуре водяного пара 600 °C.

Напомним, что кипение заключается в том, что пузыри пара образуются внутри кипящей жидкости. При нормальном давлении чистая вода кипит при 100 "С. В случае подведения тепла через свободную поверхность будет ускоряться процесс поверхностного испарения, но объёмного парообразования, характерного для кипения, не возникает. Кипение может быть осуществлено и понижением внешнего давления, так как в этом случае давление пара, равное внешнему давлению, достигается при более низкой температуре. На вершине очень высокой горы давление и соответственно точка кипения настолько понижаются, что вода становится непригодной для варки пищи - не достигается требуемая температуры воды. При достаточно высоком давлении воду можно нагреть настолько, что в ней может расплавиться свинец (327 °С), и все же она не будет кипеть.

Помимо сверхбольших температур кипения плавления (причем последний процесс требует слишком большой для такой простой жидкости теплоты плавления), аномален сам диапазон существования воды - сто градусов, на которые разнятся эти температуры, - довольно большой диапазон для такой низкомолекулярной жидкости, как вода. Необычайно велики пределы допустимых значении переохлаждения и перегрева воды - при аккуратном нагревании или охлаждении вода остается жидкой от -40 °C до +200 °C. Тем самым температурный диапазон, в котором вода может оставаться жидкой, расширяется до 240 °C.

При нагревании льда сначала температура его повышается, но с момента образования смеси воды со льдом температура будет оставаться неизменной до того момента, пока не расплавится весь лёд. Это объясняется тем, что тепло, подводимое к тающему льду, прежде всего расходуется только на разрушение кристаллов. Температура тающего льда остаётся неизменной до тех пор, пока не произойдёт разрушение всех кристаллов (см. скрытую теплоту плавления).

Температура плавления некоторых металлов, их сплавов и сталей в градусах Цельсия.

Температура плавления некоторых металлов и их сплавов и сталей в градусах Цельсия.

90 015-38.86
Металл Температура плавления
Латунь (Cu-69%, Zn 30%, Sn-1%) 900 - 940
Алюминий 660
Алюминиевые сплавы 463 - 671
Алюминиевая бронза 600 - 655
Сурьма 630
Берилл 1285
Медный берилл 865 - 955
Висмут 271.4
Латунь 1000 - 930
Кадмий 321
Серый чугун 1175 - 1290
Хром 1860
Кобальт 1495
Медь 1084
Мельхиор 1170 - 1240
Золото, 24К 1063
Хастеллой С 1320 - 1350
Инконель 1390 - 1425
Инколой 1390 - 1425
Иридий - Иридий 2450
Кованое железо 1482 - 1593
Чугун, серый чугун 1127 - 1204
Ковкий чугун 1149
Свинец 327,5
Магний 650
Магниевые сплавы 349 - 649
Марганец 1244
Марганцево-коричневый 865 - 890
Меркурий
Молибден 2620
Монель 1300 - 1350
Никель 1453
Ниобий (колумбий) 2470
Осм 3025
Палладий 1555
Люминофор 44
Платина 1770
Плутон 640
Калий 63.3
Красная латунь 990 - 1025
Рен 3186
Стержень 1965
Рутений 2482
Селен 217
Кремний 1411
Серебро, Монета 879
Чистое серебро 961
Серебро 92,5% + надбавка 893
Натрий 97.83
Углеродистая сталь 1425 - 1540
Нержавеющая сталь 1510
Тантал 2980
Трек 1750
Олово 232
Титан 1670
Вольфрам 3400
Уран 1132
Ванадий 1900
Желтая латунь 905 - 932
Цинк 419.5
Циркон 1854


.

Металлы - Химия - Analizowania.pl

Металлы

Природа состоит из веществ. Вещества обладают свойствами, которые отличают их друг от друга. Это могут быть физические и химические свойства.

В природе постоянно происходят химических превращений: веществ соединяются друг с другом или распадаются с образованием новых веществ.Человек также способствует образованию веществ. Металлы – это вещества, встречающиеся в природе и в непосредственной близости от человека.

Свойства металлов:

- твердые вещества (кроме ртути, которая является жидкостью),

- серебристый или серебристо-серый цвет (кроме меди и золота),

- металлический блеск (свет хорошо отражает полированная поверхность),

- ковкий,

- пластичный,

- хорошая электропроводность,

- хорошая теплопроводность.

Металлы различаются по плотности, температуре плавления и температуре кипения.

Плотность - физическая величина, ее числовое значение информирует о массе образца вещества объемом 1 см 3 , например магний имеет плотность 1,7 г/см 3 , алюминий 2,7 г/см 3 , железо 7,9 г/см 3 , золото 19,3 г/см 3

По плотности металлы делятся на:

- легкие металлы - их плотность менее 5 г/см 3 , напримермагний, алюминий;

- тяжелые металлы - их плотность более 5 г/см 3 , например железо, медь, золото.

Температура плавления - при этой температуре твердое тело переходит в жидкость, она различна для разных металлов, например ртуть - 39°С, серебро 960°С, железо 1535°С.

По температуре плавления металлы подразделяются на:

- легкоплавкие металлы - температура плавления ниже 700 °С

- тугоплавкие металлы - температура плавления выше 700 °С

Температура кипения характерна для каждого металла, например.ртуть кипит при 357°С, серебро при 2212°С, железо 2750°С

Твердость металлов:

- легкие металлы (можно резать ножом), например натрий, калий;

- твердые металлы, например титан, хром.

Свойства металлов и соотношение их встречаемости и легкость извлечения определяют их применение.

Применение металлов:

- лучшие проводники тока: медь и серебро, используемые в электронике,

- легкие металлы: алюминий и магний, используемые в авиации,

- металлы с высокой температурой плавления: осмий и вольфрам используется для производства нитей накаливания в лампах,

- наиболее часто используемые металлы: железо, алюминий, медь, цинк, олово, свинец, серебро, золото.

.

Физические свойства драгоценных металлов и их сплавов часть 2 - Знания

Температура плавления, температура, при которой металл переходит из твердого состояния в жидкое, является свойством, которое необходимо знать при работе с металлами. Для получения всех сплавов требуется плавка. Некоторые изделия из драгоценных металлов получают литьем, т.е. заливкой литейных форм жидким металлом. Все виды пайки, сварки и напыления выполняются расплавленным металлом, находящимся в жидком состоянии.Температура плавления сплавов обычно ниже температуры плавления входящих в их состав металлов.

Температура кипения, а также точка плавления могут варьироваться. Низкая температура кипения некоторых металлов используется для их извлечения из руд.

Другие термические свойства металлов, знание которых может быть полезным при обработке драгоценных металлов, включают:

Удельная теплоемкость - это количество теплоты в калориях, необходимое для нагревания 1 г металла на 1°С.

Теплота плавления - это количество теплоты в калориях, необходимое для превращения 1 грамма металла, нагретого до точки плавления, при постоянной температуре и давлении, из твердого состояния в жидкое.

Тепловое расширение определяется так называемым коэффициент расширения, под которым понимается приращение единичной длины (1 м) при нагревании на 1°С. Коэффициент расширения зависит не только от типа материала, но и от диапазона температур.

Теплопроводность измеряется количеством тепла в калориях, которое проходит за 1 секунду на длину 1 см через сечение в 1 см², когда разность температур, измеренная перпендикулярно этому сечению, составляет 1 °С.Серебро является лучшим проводником из всех металлов, за ним следуют медь, золото и алюминий.

Электропроводность определяется как длина проводника с поперечным сечением 1 мм 2 , дающего электрическое сопротивление 1 Ом. Все металлы являются хорошими проводниками электрического тока; лучшим из них является серебро, за ним следуют медь, золото и алюминий.

Драгоценные металлы обычно не обладают магнитными свойствами; только платина и металлы платиновой группы слабо намагничены.

.

Алюминий | Цветная металлургия

Латинское название "Alumen"

ОСНОВНАЯ ИНФОРМАЦИЯ

* Артикул: Ал

* Атомный номер: 13

* Атомный вес: 26,98

* Относительная плотность: 2,70 г/см 3

* Температура плавления: 660,52 0 С

* Температура кипения: 2467 0 С

ХАРАКТЕРИСТИКИ

Алюминий легкий, пластичный, пластичный, немагнитный; это отличный проводник электрического тока; легко окисляется; очень устойчив к потускнению; перерабатывается.

Алюминий является третьим наиболее распространенным элементом (и самым распространенным металлом) в земной коре, на его долю приходится около 8,1% по массе. Это реактивный элемент, который образует твердые тела, поэтому для получения алюминия из оксида алюминия требуется много энергии. Таким образом, чистый металл не был легко доступен до 1886 года, когда независимо друг от друга Чарльз Мартин Холл и Пол Л.Т. Эрулт разработали экономически выгодный процесс извлечения алюминия.

Для коммерческих целей алюминий получают электролизом оксида алюминия, который получают из бокситовой руды. Чистый алюминий — мягкий металл, но в сочетании с такими элементами, как кремний, магний или медь, он образует прочные сплавы.

ПРИМЕНЕНИЕ

* Автомобильный,

* Промышленное и жилищное строительство,

* Судостроение, аэрокосмическая промышленность,

*Проводно-кабельная продукция,

* Пищевая пленка,

* Банки из-под пива и безалкогольных напитков,

* Воздушные тросы со стальным сердечником,

* Ветряные турбины.

* Производство латуни, бронзы и сплавов с цинком (в качестве легирующей добавки).

Алюминий является важным компонентом некоторых магнитных материалов.

.90 000 американских ученых разработали супермет - tvp.info

Комбинация гафния, углерода и азота. В правильных пропорциях такой сплав обладает теоретически замечательными свойствами. Ученые американского Университета Брауна подсчитали, что температура плавления такого металла составит 4400 градусов Кельвина, или 4126 градусов Цельсия.

Мостик в стиле оригами.Гениальное изобретение японских инженеров

Обеспечение связью регионов, пострадавших от стихийных бедствий, является сложной задачей для служб: ее необходимо выполнять быстро, а природные условия...

увидеть больше

Если удастся создать такой сплав и он будет обладать нужными свойствами, то это будет самое стойкое к плавлению вещество, известное человеку.Считающаяся стойкой, сталь плавится при температуре около 1500 градусов Цельсия, золото — около 1000 градусов Цельсия, а алюминий — всего лишь 660 градусов Цельсия.

Ученые из Университета Род-Айленда использовали компьютерное моделирование для разработки новой формулы. Теперь они надеются синтезировать такой металл и подвергнуть его дальнейшим исследованиям.

Более дешевый метод

- Преимущество компьютерного моделирования заключается в том, что различные комбинации можно опробовать с меньшими затратами.Вместо того, чтобы искать в темноте, у нас есть шанс найти решение, о котором стоит позаботиться в лаборатории, — пояснил проф. Аксель ван де Валле из Университета Брауна.

В настоящее время наиболее устойчивым к плавлению веществом является сплав гафния, тантала и углерода. Он плавится при 3526 градусах Цельсия. Эти типы металлов в основном используются в теплозащитных экранах космических аппаратов и газовых турбинах.

источник: ежедневная почта.co.uk

#металл #Останавливаться #гафний #коричневый университет #азот #золото #алюминий .

Температура плавления алюминия. Узнайте точные значения

Алюминий — это техническое название алюминия , который представляет собой химический элемент, принадлежащий к группе металлов. Интересно, что алюминий является третьим по распространенности элементом в земной коре — его весовое содержание составляет 8,13 % (после кислорода 46,1 % и кремния 27,72 %). Алюминий — очень популярный строительный материал, но он также используется во многих других отраслях экономики. Сегодня мы проверим, при какой температуре плавится алюминий и каковы его общие физико-химические свойства.

Температура плавления алюминия

Алюминий плавится при 660,32°С . Температура кипения этого элемента составляет целых 2519°С.

Можно ли плавить алюминий в домашних условиях? На самом деле это возможно, но довольно требовательно. Прежде всего следует иметь в виду, что этот элемент легко окисляется (пассивируется и покрывается слоем трехокиси алюминия), поэтому процесс переплавки следует проводить в защитной атмосфере.Таким образом, рассматриваемое покрытие придает алюминию коррозионную стойкость при нормальных условиях эксплуатации.

Интересен тот факт, что из алюминия делают емкости для хранения азотной кислоты. При контакте с этой кислотой она подвергается сильной пассивации и становится устойчивой к ее коррозионному воздействию.

Свойства алюминия

Алюминий

отличается прежде всего малой плотностью и высокой пластичностью. Не вызывает проблем при литье и последующей обработке (не образует искр).Он хорошо проводит электрический ток, но хуже по своим механическим свойствам. Для усиления конструкций из алюминия применяют различные легирующие добавки. Интересен тот факт, что чистый алюминий отлично отражает видимый свет (99%) и инфракрасное излучение (95%).

В связи с тем, что чистый алюминий не обладает удовлетворительными механическими свойствами, обычно используются различные типы сплавов. Сочетание других металлов и алюминия делает все это дело даже в несколько раз прочнее.Интересно, что некоторые алюминиевые сплавы отлично подходят как для литья, так и для формовки. К наиболее популярным алюминиевым потолкам относится фехраль (хромаль), т.е. сочетание железа, хрома и алюминия – особенностью этого сплава является его стойкость к окислению и сере.

К сожалению, несмотря на хорошие механические свойства, алюминиевые сплавы обладают худшей коррозионной стойкостью по сравнению с чистым металлом. Это связано с тем, что чистый алюминий вступает в реакцию с кислородом воздуха и естественным образом покрывается белым налетом – оксидом алюминия.Добавление других ингредиентов ухудшает эти свойства – особенно неблагоприятны медь и кремний.

Фото: en.freepik.com

Главный редактор Joblife.pl

Уже 11 лет он занимается созданием специализированного консультативного контента. Его знания получены из многоязычных информационных каналов и научных энциклопедий.Лично я любитель горных путешествий и энтузиаст маркетинга.

.

Какой металл более устойчив к высоким температурам, чем вольфрам? Существует ли материал с температурой плавления 10 000 градусов? - новости отрасли - Новости

Какой металл более устойчив к высоким температурам, чем вольфрам? Существует ли материал с температурой плавления 10 000 градусов?

Из всех металлических элементов периодической таблицы элементом с самой высокой температурой плавления является вольфрам, с температурой плавления 3422°С (температура кипения 5930°С), и ни один элемент не имеет более высокой температуры плавления, чем элементарный вольфрам.Причина, по которой вольфрам имеет очень высокую температуру плавления из-за чрезвычайно прочной металлической связи.

Вольфрам является элементом номер 74 и находится в группе VIB шестого цикла периодической таблицы. Среди гомологичных элементов вольфрам имеет наибольшее количество валентных электронов в металлическом элементе, до шести, что означает, что каждый атом может образовывать шесть металлических связей, поэтому энергия связи этой группы элементов чрезвычайно высока, что приводит к очень высокая температура плавления.. В сочетании с другими параметрами соединения вольфрам обладает самой сильной способностью связывания, что делает вольфрам металлом с самой высокой температурой плавления.

Однако существуют и другие элементы, способные выдерживать более высокие температуры, чем вольфрам, а твердый углерод выдерживает температуры до 3627°С. Однако углеродный элемент не имеет фиксированной температуры плавления (1 нормальная атмосфера), так как возгоняется при около 3627 °С, а температура тройной точки углерода составляет 4330 °С (давление 10,8 МПа).Поэтому твердый уголь непосредственно перед расплавлением возгоняется в газообразное состояние.

Среди материалов, известных человеку, металл не только не плавится при высокой температуре в 10000 градусов, но даже эти сплавы не плавятся. На сегодняшний день самым жаростойким материалом, созданным человеком, является карбид тантала (Ta4HfC5), температура плавления которого составляет 4215°С вольфрама.

Кроме того, следует отметить, что температура плавления материала связана с давлением, и чем выше давление, тем выше температура плавления.Но когда температура и давление превышают критическое значение, материал становится сверхтекучим и теряет значение температуры плавления.

.

Смотрите также