Сварные соединения


Виды сварочных швов и техника их выполнения

Сварочный шов – неразъемное соединение, получаемое в результате сварки. Задача каждого сварщика – получение качественного сварного шва, которое гарантирует надежное соединение элементов. Для выполнения поставленной задачи нужно знать виды сварочных швов и техники их выполнения.

Основные виды сварочных швов

В первую очередь все швы делят по способу соединения деталей. По данному признаку выделяют следующие виды швов:

  • стыковые – получаемые между заготовками, примыкающими торцевыми поверхностями друг к другу,
  • нахлесточные – получаемые за счет наложения деталей друг на друга с частичным перекрытием,
  • тавровые – получаемые за счет приваривания торцевой поверхности одной заготовки к плоскости другой заготовки,
  • угловые – получаемые между заготовками, расположенными под углом друг к другу, шов получается в месте примыкания деталей,
  • торцевые – получаемые за счет сваривания торцов заготовок.

Стыковые швы

Стыковые швы являются самыми распространенным видом швов. Они используются при сварке металлических листов или труб различной толщины. Для сварки заготовки должны быть надежно зафиксированы. Между деталями остается небольшой зазор – около 1-2мм. В процессе сварки он заполняется расплавленным металлом заготовок или присадочным материалом.

Различают односторонние и двухсторонние швы. При односторонней сварке шов формируется только на одной стороне деталей. В случае двухстороннего шва сварка проводится на обеих сторонах заготовок.

В зависимости от толщины свариваемых деталей для стыковых швов по-разному готовят сварочные кромки. Соответственно этому различают формы:

  • с отбортовкой – для деталей толщиной до 4мм,
  • без скоса – для деталей толщиной до 8мм,
  • с V-образным скосом – для деталей толщиной от 3 до 60мм,
  • с X-образным скосом – для деталей толщиной от 8 до 120мм,
  • с K-образным скосом – для деталей толщиной от 8 до 100мм,
  • с криволинейным скосом – для деталей толщиной от 15 до 100мм.

Для тонких деталей возможна стыковая сварка без обработки кромок или с обработкой только на одной стороне.

Нахлесточные швы

При выполнении швов внахлест поверхности свариваемых деталей параллельны друг другу и частично друг друга перекрывают. Такие швы считаются самыми простыми и удобными для практики неопытных сварщиков.

Сварка швами внахлест всегда выполняется с двух сторон. Кромка каждой заготовки должна быть приварена к поверхности другой. Кромки подготавливаются без скоса. Угол наклона электрода при выполнении сварки должен быть в пределах 15o-45o. Если угол наклона будет выходить за эти пределы, то шов «заползет» на одну и сторон стыка.

Тавровые швы

Тавровые швы выполняются привариванием торца одной заготовки к боковой поверхности другой заготовки и в разрезе напоминают букву Т. Чаще всего сварка проводится под прямым углом, но возможно и другие варианты. В процессе сварки заполняется угол, образованный между деталями. Поэтому важно обеспечить глубокое проплавление деталей. Обычно это достигается за счет использования методов автоматической сварки.

Тавровые швы всегда двухсторонние. Форма подготовленных кромок возможна без скоса и с одним или двумя скосами одной кромки. Обрабатывается только привариваемый торец. Как правило, без скоса свариваются детали небольшой толщины – от 2 до 40мм. Для деталей толщиной от 8 до 100мм производится обработка кромки.

При сваривании тавровых швов важно знать их особенность: получаемые швы в итоге прочнее основного металла. Поэтому перед сварочными работами нужно проводить расчеты по получаемому сопротивлению материалов. Это необходимо, чтобы избежать неравномерной прочности деталей, разной стойкости к нагреву и охлаждению и другим скрытым дефектам.

Угловые швы

Угловые швы часто относят к подвиду тавровых швов. Но при этом угловые швы больше распространены, чем тавровые. По форме угловые швы напоминают букву Г. Угол между деталями может быть любой, но чаще всего – прямой. В работе необходимо выполнять правила геометрии шва: ширину, изогнутость, выпуклость шва и корень стыка.

При работе с угловыми швами главной проблемой является стекание металла по углу или с вертикальной поверхности на горизонтальную. Поэтому важно контролировать ровное ведение электрода, соблюдая углы наклона. Так для сварки листов разной толщины нужно держать электрод под углом 60o по отношению к более толстой заготовке. В результате основное тепло придется на более толстую деталь, а более тонкая не перегреется и не прогорит.

Угловые швы бывают односторонние и двухсторонние. Для двухстороннего шва сварка выполняется и на внутреннем, и на внешнем угле. Возможна сварка без обработки кромок или скосами. Скос может выполняться с одной или с двух сторон одной кромки. Вторая кромка при этом не обрабатывается.

Прочность угловых швов ниже прочности основного металла. Этот момент нужно учитывать при проектировании и проведении работ.

Торцевые швы

Торцевые швы используются для сваривания деталей разной формы, прилегающими друг к другу боковыми поверхностями. Угол прилегания может находиться в пределах от 0o до 30o. Такая сварка подходит для работы как с тонкими, так и с толстыми металлами, а также для сварки деталей разной толщины. Перед сваркой выполняется разделка кромок под односторонние скосы.

Торцевые швы отличаются высокой выносливостью к нагрузкам. Но при этом возможно попадание влаги или загрязнений между поверхностями деталей, что в будущем приведет к коррозии. Особенно это вероятно при наличии непроваров.

Другие критерии классификации сварных соединений

Кроме способа соединения деталей швы различаются по другим параметрам:

  • по форме шва различают выпуклые и плоские швы,
  • по протяженности бывают сплошные и прерывистые швы,
  • по положению свариваемых поверхностей в пространстве бывают горизонтальные, вертикальные, потолочные и нижние швы и другие классификации.

Перед началом работ важно определить вид сварочного шва по всем параметрам. Это поможет подобрать оптимальную технику выполнения сварки в каждом конкретном случае. Например, сварка углового соединения в вертикальном положении потребует более тщательной подготовки, чем сварка стыкового шва в нижнем положении.

Сварные соединения в SOLIDWORKS Simulation / Хабр

Дополнительный модуль SOLIDWORKS Simulation позволяет проводить инженерные расчеты в деталях и сборках. В этой статье мы рассмотрим реализацию сварных соединений на примере небольшой части трубопровода.

Постановка задачи

Нам необходимо создать три твердотельных тела (рис. 1).

Рис.1

Создаем новое исследование, выбираем Статический анализ.

Затем заходим во вкладку Детали. Здесь представлены три элемента, два из которых имеют значки, означающие твердотельный элемент, и один значок, означающий оболочку (рис. 2).

Рис.2

Если щелкнем правой кнопкой мыши по этим оболочечным деталям и выберем Рассматривать как твердое тело, значок поменяется на твердотельный элемент, как и сама деталь (рис. 3).

Рис.3

Рядом с деталями расположены значки треугольников, которые показывают порядок элементов (рис. 4).

Рис.4

Их кромки немного кривые. Это означает, что будет строиться сетка 2-го порядка (высококачественная сетка). Если щелкнуть правой кнопкой мыши по детали и выбрать Применить сетку чернового качества, значок изменится на треугольник с прямыми кромками (рис. 5).

Рис.5

Сетка элементов в данном случае станет 1-го порядка. Это значит, что сеточные элементы не будут иметь промежуточного узла и все элементы могут перемещаться и деформироваться, но не могут изменять свои стенки и ребра, то есть не изгибаются. Вернем сетку 2-го порядка.

Затем для примера преобразуем верхнюю деталь в оболочку. Это можно сделать двумя способами. Первый способ – воспользоваться вкладкой Менеджер оболочки, в которой выбираются необходимые тонкостенные детали или грани (рис. 6).

Рис.6

Второй способ – использование функции Определить оболочку выбранными гранями. Устанавливаем тип Тонкая и выбираем переднюю грань. Пока указываем тип без предварительного просмотра. Толщину по умолчанию оставляем в 1 мм (рис. 7).

Рис.7

Переходим во вкладку Смещения и видим, что выбрана Срединная поверхность. Если включить Полный предварительный просмотр, от выбранной грани в каждую сторону программа отложит по 0.5 мм. Поскольку нам нужна Нижняя поверхность, зададим значение толщины до 1.5 мм, чтобы достичь визуального соответствия (рис. 8).

Рис.8

Значок изменится с «твердотельного» на «оболочку» (рис. 9).

Рис.9

Теперь зададим одинаковый материал для всех элементов, для примера выберем оцинкованную сталь.

Следующий шаг – редактируем Глобальное взаимодействие, поскольку с версии 2021 года изменилась терминология контактов: теперь она логичней передает смысл оставшихся неизменными функций. Например, то, что раньше называлось Нет проникновения, сейчас носит название Контакт, а Проникновение допускаетсяСвободно. Таким образом, поскольку тип Связанные склеивает элементы, а Контакт не допускает проникновение, мы выбираем тип Свободно, когда проникновение допускается (рис. 10).

Рис.10

Это сделано, чтобы увидеть только сварочные контакты. Правда, если удалить Глобальное взаимодействие, результат будет тем же.

Граничные условия

Создаем сварной шов на границе оболочки и твердого тела. Выбираем грань на оболочке, при этом не забывая, что нужно выбирать именно ту поверхность, через которую раннее была создана оболочка. Других граней программа «не видит», так как для созданной оболочки их нет. После выбора второй грани на твердотельном элементе появится подсветка нужной нам кромки, где будет проходить сварочный шов. Оставляем все по умолчанию, лишь укажем размер шва в 0.8 мм (рис. 11).

Рис.11

Затем следует создать точечный шов. Для этого нужно указать две поверхности, которые будут свариваться. Выбираем две грани, между которыми будет построена в выбранных точках связь, как будто их уже проплавили и соединили. Если бы мы взяли внутренние грани, то прочность была бы ниже, потому что при этом толщина самого листового металла не участвовала бы. Указываем крайние точки прямоугольников. Диаметр точечного сварного шва будет равен 2.5 мм (рис. 12).

Рис.12

Теперь задаем крепления. Зафиксируем нижнюю грань листового метала и верхнюю кромку оболочки. Не забывайте, какую именно кромку оболочки нужно закреплять (там, где ранее создали оболочку), в противном случае будет возникать ошибка (рис. 13).

Рис.13

Задаем силу, выбираем внутреннюю грань центрального твердотельного элемента. Указываем направление, в качестве справочной геометрии выбираем грань, как изображено на рисунке, и параллельно выбранной плоскости задаем силу в 250 Н (рис. 14).

Рис.14

Следующий шаг – это формирование сетки. Создадим Элементы управления сеткой, выберем места, где могут быть ошибки – это скругления и грани, где находятся сварные соединения. Задаем плотность сетки Высокое (рис. 15).

Рис.15

Далее создаем сетку на основе кривизны (рис. 16).

Рис.16

Сетка построена, правда она не совсем корректна (рис. 17). Поскольку узлы сетки не совпадают, одна сетка получилась крупнее, чем другая. Но не будем заострять на этом внимание. Рассмотрение данной проблемы требует отдельной статьи.

Рис.17

Результаты

После запуска расчета взглянем на эпюру напряжения (рис. 18).

Рис.18

Напряжения не достигли предела текучести. На эпюре видно, что сварочный шов отработал хорошо: есть лишь некоторые локальные концентраторы напряжений. Точечные сварные швы должны тоже содержать локальные возмущения. Шкала деформации равна 25, значит реальная деформация была увеличена в 25 раз. Выберем точную шкалу и поставим единицу измерений на легенде МПа.

Рис.19

Видно, что максимальные напряжения находятся на креплениях. Сейчас лучше видны всплески напряжений в точечных сварных швах.

Вывод

Инженерный модуль SOLIDWORKS Simulation позволяет проводить расчеты на прочность, усталость и многое другое с помощью разных типов соединений. В этой статье мы рассмотрели сварные соединения.

Результаты максимальных напряжений показали, что концентраторы напряжений находятся в точечных сварных швах, представляющих собой точечные контакты. Математически они вводят сингулярность с бесконечными значениями напряжений. Поэтому дальнейшее уточнение сетки не приведет к более точному распределению напряжений. Точечные сварные швы могут быть использованы только для изучения глобальной деформации всего тела, что потребует детального их анализа.

Если вы предпочитаете изучать новый материал по видео, добро пожаловать на наш YouTube-канал «Школа SOLIDWORKS». Перейдя по ссылке, вы сможете посмотреть видеоролик, в котором мы учимся задавать сварные соединения в SOLIDWORKS Simulation.

Автор: Максим Салимов, технический специалист по SOLIDWORKS ГК CSoft

E-mail: [email protected]


Нужно обучение с профессионалами? Переходите по ссылке и выбирайте курс.


Читайте другие наши статьи, посвященные SOLIDWORKS:

Виды сварных соединений и швов

Сеть профессиональных контактов специалистов сварки

Неразъемное соединение, выполненное сваркой, называется сварным соединением. В зависимости от взаимного расположения в пространстве соединяемых деталей различают соединения:

  • Стыковые сварные соединения (Рис. 1, а) – свариваемые элементы располагаются в одной плоскости или на одной поверхности. Устанавливается 32 вида стыковых соединений. Обозначаются С1, С2, С3, С4 и т.д.
  • Нахлесточные сварные соединения (Рис. 1, б). Свариваемые элементы расположены параллельно и перекрывают друг друга. Величина перекрытия должна быть в пределах 3-420 мм. Обозначаются Н1, Н2.
  • Тавровые сварные соединения(Рис. 1, в). Отличительной особенностью этих соединений является то, что одна из соединяемых деталей торцом устанавливается на поверхности другой и приваривается, образуя в сечении как бы букву Т (отсюда и название – тавровое). Обозначаются Т3, Т6 и т.д.
  • Угловые сварные соединения (Рис. 1, г) – сварное соединение двух элементов, расположенных под прямым углом и сваренных в месте примыкания их краев.

Рисунок 1. Типы сварных соединений.

а) стыковое; б) нахлесточное; в) тавровое; г) угловое.

Обозначаются согласнo ГОСТ 5264-80 У1, У2, У3 и т.д.

Классификация сварных швов

По виду сварного соединения – стыковые и угловые.

По положению сварного соединения в котором выполняются сварные швы бывают: «в лодочку» нижние, полугоризонтальные, горизонтальные, полувертикальные, вертикальные, полупотолочные и потолочные.

По конфигурации сварного соединения швы бывают прямолинейные кольцевые и криволинейные.

По протяженности сварного соединения – сплошные и прерывистые.

По применяемому виду сварки разделяются на швы ручной дуговой сварки, автоматической и механизированной под флюсом, швы дуговой сварки в защитных газах, швы электрошлаковой сварки, электрозаклепочные, контактной, газовой, паянных соединений.

По способу удержания сварочной ванны: на швы, выполненные без прокладок и подушек, на съемных и остающихся стальных прокладках, на медных, флюса медных, керамических и асбестовых подкладках.

По количеству наложения швов бывают односторонние, двусторонние, многослойные и многопроходные.

По применяемому для сварки материалу швы сварных соединений подразделяются на швы из углеродистых и легированных сталей, швы цветных металлов, биметалла, винипласта и полиэтилена.

По расположению свариваемых деталей относительно друг друга швы могут быть под острым, тупым, прямым углом, а также располагаться в одной плоскости.

По действующему на шов усилию швы бывают фланговые, лобовые, комбинированные и косые.

По объему наплавленного металла нормальные, ослабленные и усиленные швы.

По форме свариваемой конструкции на изделии продольные и поперечные.

Copyright. При любом цитировании материалов Cайта, включая сообщения из форумов, прямая активная ссылка на портал weldzone.info обязательна.

СВАРНОЕ СОЕДИНЕНИЕ - это... Что такое СВАРНОЕ СОЕДИНЕНИЕ?

СВАРНОЕ СОЕДИНЕНИЕ

неподвижное неразъёмное соединение двух или более частей конструкции, выполненное сваркой. По взаимному расположению соединяемых элементов различают С. с. (см. рис.) стыковые, нахлёсточные, угловые, тавровые, с накладками и др.

Виды сварных соединений: 1 - стыковые; 2 - нахлёсточное; 3 - угловые; 4 - тавровые; 5 - с накладками

Большой энциклопедический политехнический словарь. 2004.

  • СВАРКА ЭЛЕКТРОННО-ЛУЧЕВАЯ
  • СВАРНОЙ ШОВ

Смотреть что такое "СВАРНОЕ СОЕДИНЕНИЕ" в других словарях:

  • Сварное соединение — Сварное соединение  неразъёмное соединение, выполненное сваркой. Сварное соединение включает три характерные зоны, образующиеся во время сварки: зону сварного шва, зону сплавления и зону термического влияния, а также часть металла,… …   Википедия

  • сварное соединение — Неразъемное соединение, выполненное сваркой [ГОСТ 2601 84] [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] сварное соединение Газонепроницаемое соединение металлических деталей, находящихся в пластичном или… …   Справочник технического переводчика

  • сварное соединение — 3.4 сварное соединение: Неразъемное соединение, выполненное сваркой и представляющее собою совокупность характерных зон в трубе. Источник: ГОСТ Р 52079 20 …   Словарь-справочник терминов нормативно-технической документации

  • Сварное соединение —         участок конструкции или изделия, на котором сваркой соединены между собой составляющие их элементы, выполненные из однородного или разнородных материалов.          Классификация С. с. и швов. По взаимному расположению соединяемых… …   Большая советская энциклопедия

  • Сварное соединение — Weld Сварное соединение. Соединение металлов или неметаллов, выполненное за счет нагрева материалов до заданных температур, как с применением давления и присадочных материалов, так и без них. (Источник: «Металлы и сплавы. Справочник.» Под… …   Словарь металлургических терминов

  • Сварное соединение — Weldment Сварное соединение. Соединение, чьи детали соединены сваркой. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003 г.) …   Словарь металлургических терминов

  • сварное соединение — virintinė jungtis statusas T sritis radioelektronika atitikmenys: angl. weld joint; welded joint; welded junction vok. geschweißter Übergang, m; Schweißverbindung, f rus. сварное соединение, n; сварной переход, m pranc. joint soudé, m; jonction à …   Radioelektronikos terminų žodynas

  • сварное соединение — [weld] часть конструкции, элементы которой соединены сваркой. По взаимному расположению соединениямых элементов различают стыковые, тавровые, нахлесточные и угловые сварные соединения. Участок сварного соединения, связывающий свариваемые элементы …   Энциклопедический словарь по металлургии

  • СВАРНОЕ СОЕДИНЕНИЕ — [welded joint] неразъемное соединение, выполненное сваркой …   Металлургический словарь

  • Стыковое сварное соединение — 20. Стыковое сварное соединение Соединение, в котором свариваемые элементы примыкают друг к другу торцевыми поверхностями и включают в себя шов и зону термического влияния Источник …   Словарь-справочник терминов нормативно-технической документации

Обзор типов сварных соединений и швов

Сварным называется соединение неразъемного типа нескольких элементов создаваемой конструкции, сформированное посредством процедуры сварки. Его качество является характеристикой производной от таких факторов, как тип подобранного к реализации шва, используемого расходного материала, известного под названием электрод, и примененного режима работы аппарата. Чтобы к конечному результату не возникали претензии, исполнителю необходимо руководствоваться нормами ГОСТа 5264-80. Этот стандарт содержит подробное описание типов сварных соединений и разновидностей сварных швов. О них и пойдет речь в предлагаемой вашему вниманию статье.

Сварные соединения

Терминологию в сфере сварки устанавливают положения ГОСТа 2601-84. И если со «сварным соединением» все более-менее ясно (см. выше), то понятие «сварочный шов» требует уточнения. В данном нормативном документе сказано, что это – сегмент сварного соединения, сформировавшийся в результате процесса кристаллизации металла, пребывающего в жидком агрегатном состоянии. Если же сваривание проводилось давлением, тогда шов – это результат пластической деформации.

Стыковое соединение

Соединение этого типа считается самым популярным. Причины такие:

  • минимальное напряжение металла;

  • простота выполнения;

  • надежность сопряжения объектов.

На угол обрезки кромки оказывает влияние ее толщина. Он может быть прямым или острым. Допускается также, чтобы скошенной была лишь одна из стыкуемых кромок.


Особенности выполнения стыковых швов

При сварке металла толщиной, не превышающей 6,0 мм, необходимость в специальной подготовке кромок отсутствует. Однако, соблюдать здесь нужно следующее основное требование: они должны быть максимально параллельными на протяжении всего шва. Тогда можно будет состыковать листы с минимальным зазором

В ходе процедуры сварки необходимо обеспечить, чтобы все края пребывали в равномерно расплавленном состоянии. Для этого нужно совершать электродом поперечные колебательные движения, когда валик наплавляется. Значительное усиление конструкции обеспечивает тот факт, что размер сечения образовавшегося шва может достичь 100% толщины свариваемого элемента.


Как не допустить образование дефектов шва

Дефекты шва формируются при несоблюдении технологии сварки. Непровар сечения будет наблюдаться при:

  • недостаточном уровне нагрева дуги, вследствие чего

  • свариваемые металлические пластины не расплавляются по всей своей толщине.

Иная ситуация имеет место, когда дуга нагрета до избыточной температуры. Тогда возможен сквозной прожог. Другой тоже неприятный вариант при перегреве электродуги – полное расплавление шва, сопровождающееся образованием с тыльной стороны натеков.

Получить шов с безупречным сечением – то есть профиль листов металла полностью проварен, а обратная сторона свободна от натеков – возможно, однако это сопряжено с определенными сложностями. Ведь варить и одновременно контролировать состояние тыльной стороны сварщик просто физически не может.

Чтобы выйти из этого положения он вынужден работать на пониженных режимах сварки. Так удастся исключить прожоги, но в результате образуется непровар. Однако статические испытания швов с таким дефектом на степень прочности зачастую дают приемлемые результаты. Кроме того, компенсация непровара возможна путем дополнительного усиления шва. Но только при условии, если шов будет работать под воздействием статических нагрузок. Когда же нагрузки носят импульсный либо переменный характер, непровар может привести к разрушению конструкции. Недопущение его формирования проводится путем:

  • использования в ходе сварочных работ подкладок;

  • дополнительного подваривания шва с обратной стороны. При этом наносимый валик должен характеризоваться меньшим сечением.

Соединение внахлест

Такой сварочный процесс предусматривает соединение двух или более металлических пластин, размещенных одна над другой частично либо по всей площади. В ходе работ формируется, как минимум, один шов

Когда скрепляются лишь две заготовки, применяется точечная односторонняя сварка.
Этот метод может использоваться также, когда один лист тонкий, а другой – толстый. В иных случаях при необходимости сопряжения большего количества элементов, используется уже двусторонняя сварка.

Особенности

Нахлесточное соединение актуально для металлических пластин, толщина которых (обозначение Т) находится в пределах 8,0 мм≤Т≤12,0 мм. Необходимость в обработке поверхности отсутствует. Но при этом заготовка должна иметь ровный торец. Подлежит также тщательному расчету величина области нахлеста.

Из особенностей сварного соединения внахлест стоит выделить:

  • сфера применения – сварка контактного, роликового и точечного типов;

  • формирование шва осуществляется между торцом одной пластины и поверхностью другой;

  • повышен уровень расхода материала, как основного, так и наплавляемого.

Для обеспечения плотного прижима сварочные работы должен предварять этап тщательного выравнивания соединяемых листов.

Продолжая разговор о точечной сварке нахлесточных соединений, отметим факт наличия у этого метода некоторых серьезных недостатков. Их причина кроется в его особенности. Способ точечной сварки не предусматривает создание угловых швов. Данный фактор обусловливает образование между соединяемыми элементами конструкции зазоров вне пределов отрезков соприкосновения. В них может скапливаться влага, при контакте с которой металл ржавеет.

Решить эту проблему достаточно сложно. Ведь для предотвращения появления оксидов железа – то есть ржавчины – все зазоры должны быть наполнены антикоррозионным составом. А сделать это в полном объеме, практически, невозможно. Поэтому долговечность сварочного узла, созданного точечной сваркой, достичь оптимальных показателей априори не может.

Сфера применения нахлесточной сварки

Этот метод сварки получил широкое распространение. В частности, он используется при:

  • сборке быстровозводимых сооружений различной функциональной направленности;

  • создании навесных конструкций, обеспечивающих защиту от прямого солнечного излучения;

  • производстве рекламных щитов;

  • сборке автомобильных тентов.

Тавровое соединение

Соединение этого типа предусматривает, что свариваемые элементы конструкции располагаются под некоторым углом. Иными словами, торец одного должен опираться на поверхность другого. На первом, чтобы обеспечить надежность, опытные сварщики проделывают скосы с одной либо двух сторон. Такой подход призван увеличить объем наплавляемого металла. Сфера применения тавровой сварки – создание металлических конструкций, отличающихся сложной конфигурацией.



Прежде чем приступить к работе, сварщик должен учесть такие моменты:

  • расположение в пространстве привариваемых деталей. Оно может быть вертикальным, нижним, либо потолочным;

  • профессионалы с многолетним стажем рекомендуют соблюдать зазор между подлежащими сварке стыками в пределах 2-3 миллиметра. Это обеспечит лучшее скрепление;

  • стандартно швы должны располагаться по обеим сторонам;

  • допускается также формирование одностороннего шва. Но только при условии, что обрабатывать стык с обеих сторон физически невозможно.

Конфигурацию скосов устанавливают положения ГОСТа 5264-80. А их угол является параметром производным от толщины сопрягаемых пластин.

Первый пункт выше представленного списка, касающийся пространственного расположения свариваемых деталей, очень важен и поэтому заслуживает отдельного разговора.

Вертикальное положение

Неудобство этой позиции проявляется при работе с металлами, характеризующимися низкой вязкостью. Их необходимо проваривать достаточно быстро, не допуская вытекания расплава. Толщина листов, а также глубина разделки их кромок определяют количество проходок. Если планируется сформировать глубокий шов, скосы должны быть прямыми либо криволинейными. Разжигание дуги следует осуществлять так, чтобы она была направлена под углом 90° к поверхности, подлежащей сварке, и поддерживать ее нужно короткой. Электрод перемещается по биссекторной плоскости таврового соединения. Шов формируется путем проведения возвратно-колебательных движений по всей протяженности стыка. Во время передвижения вверх требуется контролировать, чтобы дуга не обрывалась. Для этого ее необходимо растягивать.

Место, где формируется валик при вертикальном положении – самый верхний участок. Сварочный ток устанавливается обратной полярности. Для обеспечения хорошего проплавления корневого сегмента таврового соединения его сила должна быть большой.

Электрод отводится, если металл обретает иной цвет либо на поверхности появляются пятна побежалости. Это – признаки угрозы его перегрева. В идеальном варианте придавать валику требуемый профиль без необходимости подрезов должна сама ванна расплава. Нужно контролировать:

  • давление дуги. Его должно хватать на прогрев металла до требуемой температуры;

  • поддержание расплава в таком состоянии, чтобы валик не выходил за установленные границы.

Нижнее положение

Сварка соединения таврового типа в данном положении осуществляется с применением:

  • тока, характеризующегося прямой полярностью и значительной силой, чтобы смогла образоваться глубокая ванна расплавленного металла;

  • тока, характеризующегося обратной полярностью. Необходимо формировать короткую дугу и направлять ее непосредственно в корень создаваемого сварного шва.  При этом вероятность образования канавки, располагающейся на металле по всей протяженности этого шва (такой дефект называется «подрез») возрастает.

В случае выполнения таврового соединения одно- либо многопроходной сваркой, необходимо следить, чтобы электрод перемещался равномерно (накладываются неширокие валики, причем перемещения электрода в поперечном направлении должны быть исключены). Прежде чем приступать к очередной проходке, необходимо сбивать шлак.

Наплавка вверх должна выполняться быстро с одновременным растягиванием электродуги. Накладывать капли расплава нужно лишь при обратном перемещении электрода. Место его пространственного расположения – биссекторная плоскость угла 90° с наклоном в сторону перемещения. Образование катета требуемой ширины обеспечивает совокупность следующих факторов:

Потолочное положение

Сварку стыка необходимо осуществлять на токе небольшого ампеража обратной полярности. Когда выполняются возвратно-поступательные перемещения электрода, дуга должна оставаться непрерывной. Расплавляют одновременно оба боковых торца. Образуется шов выпуклой конфигурации. Нельзя допускать перегрева металла.

Многопроходная сварка выполняется так, чтобы передвижение электрода не сопровождалось выполнением поперечных пасов рукой. Поверхность всех валиков подлежит максимальному выравниванию. Реализуется это поддержанием стабильно низкой тепловой мощности электродуги. Отслеживать состояние ванны расплава затрудняют искры. Подбор электродов производится по критерию «качество обмазки». Предпочтение отдается той, которая снижает уровень разбрызгивания расплавленного горячего металла.

Сварное соединение угловое

Под угловым понимается сопряжение, в котором края двух элементов свариваются так, что между их поверхностями образуется пространственный угол. Чаще всего он равен 90°, но может принимать любые значения. Надежность требуемого уровня достигается за счет скосов, а также благодаря значительному объему наплавляемого металла.


Сложности процедуры формирования углового соединения

Подразделение соединений сварочных угловых на виды осуществляется на основе нескольких критериев. Так, по признаку «методика укладки шва» они бывают прерывистыми и сплошными. Еще один актуальный критерий – их длина:

  • короткие. Протяженность не превышает 250,0 мм;

  • средние. Размеры данных соединений (обозначение L) принимают значение из диапазона 250,0 мм<L≤1000,0 мм;

  • длинные. Их величина больше 1000,0 мм.

При создании угловых соединений возможно появление некоторых дефектов. Наиболее часто встречающиеся кратко описаны ниже.

Подрезы

Об этих дефектах выше уже шел разговор.  Добавим причину их появления: под воздействием электродуги на поверхности скрепляемых деталей формируются углубления. Когда сварка осуществляется в нижнем положении, вполне возможно ненадолго задерживать электрод с целью наплавления материала используемой присадки на отрезок с канавкой. Но методика выполнения углового соединения гораздо сложнее, и поэтому сварщику придется серьезно потрудиться, чтобы, так сказать, «загнать» жидкий металл на вертикальную боковую стенку. По этой причине у сварного соединения углового выемки имеются лишь с одного из боков.

Непровары

Многие сварщики, не имеющие достаточного опыта, заполняя место углового соединения, с большой амплитудой перемещают конец электрода в разные стороны. Такие действия обусловливают оседание металла на боках, ввиду чего корень шва хорошо не проваривается.

Неправильный выбор катета

Для получения углового соединения хорошего качества необходимо:

  • обрести навыки правильного подбора параметров тока;

  • проводить электрод с требуемой скоростью. Ее превышение недопустимо.

Если сила тока невелика, а электроды перемещаются медленно, катет становится чрезмерно выпуклым. Вследствие этого, основной металл если и проплавится, то плохо.

И наоборот, повышенная скорость передвижения электрода при излишне большой силе тока приведет к обретению катетом вогнутой конфигурации.

Неправильный угол

Сварочным соединениям характерна определенная форма по отношению к градусу угла. Тонкость заключается в соблюдении требуемых размеров. Когда приставная пластина перемещается, «завалившись» на один бок, показатель качества конструкции будет невысоким.

Неравномерное распределение расплава по сторонам

Здесь проявляются законы физики. Под воздействием гравитационной силы расплавленный металл стремится стечь вниз. Ввиду этого основной участок шва формируется на нижнем листе. Вполне возможно, что верхний торец проплавится лишь слегка. В результате сформированное соединение при нагрузке сразу может деформироваться, либо вообще распасться.

В ходе сварки могут возникать и иные дефекты:

  • углубления трубчатой конфигурации либо воронкообразные – свищи;

  • несплошности, в виде локальных разрушений сварочного соединения – трещины;

  • участок, располагающийся поблизости от крайней точки валика, не заваренный либо не перекрытый при последующих проходах – кратер;

  • полости/пустоты в сварном соединении, появившиеся из-за усадки металла при его кристаллизации – усадочные раковины;

  • застывшие остатки флюса – шлак.

Специфические особенности

Угловым соединениям присуща следующая специфика:

  • необходимость предварительной подготовки поверхности. Предполагает корректное формирование скосов любой конфигурации – простой либо сложной;

  • сваривать заготовки с тонкими стенками допускается только с одной стороны;

  • требуется учитывать геометрические особенности сварного соединения.

Заключение

Каждый тип сварного соединения обозначается по-своему. Так, для стыкового применяется литера «C», за которой следует цифра либо двузначное число, например, C2, C13, C45. Обозначение углового соединения выглядит так: У1...У10. Соединение сварное тавровое обозначается сочетанием буквы «T» с цифрой от 1 до 9. Например, T2, T8, T9. Для нахлесточного соединения используются такие варианты буквенно-цифровой последовательности – «h2» или «H 2».


Товары каталога:



Please enable JavaScript to view the comments powered by Disqus. comments powered by

Обзор дефектов и контроль качества сварных соединений

Дефекты и контроль качества сварных соединений

Общие сведения и организация контроля

По ГОСТ 15467-79 качество продукции есть совокупность свойств продукции, обусловливающих ее пригодность удовлетво­рять определенные потребности в соответствии с ее назначением. Качество сварных изделий зависит от соответствия материала тех­ническим условиям, состояния оборудования и оснастки, правиль­ности и уровня отработки технологической документации, соблюдения технологической дисциплины, а также квалификации работающих. Обеспечить высокие технические и эксплуатацион­ные свойства изделий можно только при условии точного выпол­нения технологических процессов и их стабильности. Особую роль здесь играют различные способы объективного контроля как про­изводственных процессов, так и готовых изделий. При правильной организации технологического процесса контроль должен быть его неотъемлемой частью. Обнаружение дефектов служит сигналом не только к отбраковке продукции, но и оперативной корректировке технологии.

Сварные конструкции контролируют на всех этапах их изготов­ления. Кроме того, систематически проверяют приспособления и оборудование. При предварительном контроле подвергаются про­верке основные и вспомогательные материалы, устанавливается их соответствие чертежу и техническим условиям.

После заготовительных работ детали подвергают чаще всего наружному осмотру, т.е. проверяют внешний вид детали, качество поверхности, наличие заусенцев, трещин, забоин и т.п., а также измеряют универсальными и специальными инструментами, шаб­лонами, с помощью контрольных приспособлений. Особенно тща­тельно контролируют участки, подвергающиеся сварке. Профиль кромок, подготовленных под сварку плавлением, проверяют спе­циальными шаблонами, а качество подготовки поверхности - с помощью оптических приборов или специальными микрометрами.

Во время сборки и прихватки проверяют расположение деталей друг относительно друга, величину зазоров, расположение и размер прихваток, отсутствие трещин, прожогов и других дефектов в местах прихваток и т.д. Качество сборки и прихватки определяют главным образом наружным осмотром и обмером.

Наиболее ответственным моментом является текущий контроль выполнения сварки. Организация контроля сварочных работ может производиться в двух направлениях: контролируют сами процессы сварки либо полученные изделия.

Контроль процессов позволяет предотвратить появление систе­матических дефектов и особенно эффективен при автоматизиро­ванной сварке (автоматическая и механизированная дуговая, электрошлаковая и др.). Существуют следующие способы контроля сварочных процессов.

Контроль по образцам технологических проб. В этом случае периодически изготовляют образцы соединений из материала той же марки и толщины, что и свариваемое изделие, и подвергают их всесторонней проверке: внешнему осмотру, испытаниям на проч­ность соединений, просвечиванию рентгеновскими лучами, метал­лографическому исследованию и т.д. К недостаткам такого способа контроля следует отнести некоторое различие между образцом и изделием, а также возможность изменения сварочных условий с момента изготовления одного образца до момента изготовления следующего.

Контроль с использованием обобщающих параметров, имеющих прямую связь с качеством сварки, например использование дила­тометрического эффекта в условиях точечной контактной сварки. Однако в большинстве случаев сварки плавлением трудно или не всегда удается выявить наличие обобщающего параметра, позволя­ющего достаточно надежно контролировать качество соединений.

Контроль параметров режима сварки. Так как в большинстве случаев определенных обобщающих параметров для процессов сварки плавлением нет, то на практике контролируют параметры, непосредственно определяющие режим сварки. При дуговой сварке такими параметрами в первую очередь являются сила тока, дуговое напряжение, скорость сварки, скорость подачи проволоки и др. Недостаток такого подхода заключается в необходимости контро­лирования многих параметров, каждый из которых в отдельности не может характеризовать непосредственно уровень качества полу­чаемых соединений.

Контроль изделий производят пооперационно или после окон­чания изготовления. Последним способом обычно контролируют несложные изделия. Качество выполнения сварки на изделии оце­нивают по наличию наружных или внутренних дефектов. Развитие физики открыло большие возможности для создания высокоэффек­тивных методов дефектоскопии с высокой разрешающей способ­ностью, позволяющих проверять без разрушения качество сварных соединений в ответственных конструкциях.

В зависимости от того, нарушается или не нарушается це­лостность сварного соединения при контроле, различают неразрушающие и разрушающие методы контроля.

Дефекты сварных соединений и причины их возникновения

В процессе образования сварных соединений в металле шва и зоне термического влияния могут возникать различные отклонения от установленных норм и технических требований, приводящие к ухудшению работоспособности сварных конструкций, снижению их эксплуатационной надежности, ухудшению внешнего вида из­делия. Такие отклонения называют дефектами. Дефекты сварных соединений различают по причинам возникновения и месту их расположения (наружные и внутренние). В зависимости от причин возникновения их можно разделить на две группы. К первой   группе относятся дефекты, связанные с металлургическими и тепловыми явлениями, происходящими в процессе образования, формирования и кристаллизации сварочной ванны и остывания сварного соединения (горячие и холодные трещины в металле шва и околошовной зоне, поры, шлаковые включения, неблагоприятные изменения свойств металла шва и зоны термического влияния).

Ко второй группе дефектов, которые называют дефектами фор­мирования швов, относят дефекты, происхождение которых связано в основном с нарушением режима сварки, неправильной подготов­кой и сборкой элементов конструкции под сварку, неисправностью оборудования, недостаточной квалификацией сварщика и другими нарушениями технологического процесса. К дефектам этой группы относятся несоответствия швов расчетным размерам, непровары, подрезы, прожоги, наплывы, незаваренные кратеры и др. Виды дефектов приведены на рис. 1. Дефектами формы и размеров сварных швов являются их неполномерность, неравномерные ши­рина и высота, бугристость, седловины, перетяжки и т.п.

Рисунок 1 - Виды дефектов сварных швов:

а - ослабление шва. б - неравномерность ширины, в - наплыв, г - подрез, с - непровар, с - трещины и поры, ж - внутренние трещины и поры, з - внутренний непровар, и - шлаковые включения

Эти дефекты снижают прочность и ухудшают внешний вид шва. При­чины их возникновения при механизированных способах сварки - колебания напряжения в сети, проскальзывание проволоки в пода­ющих роликах, неравномерная скорость сварки из-за люфтов в механизме перемещения сварочного автомата, неправильный угол наклона электрода, протекание жидкого металла в зазоры, их неравномерность по длине стыка и т.п. Дефекты формы и размеров швов косвенно указывают на возможность образования внутренних дефектов в шве.

Наплывы образуются в результате натекания жидкого металла на поверхность холодного основного металла без сплавления с ним. Они могут быть местными - в виде отдельных застывших капель, а также иметь значительную протяженность вдоль шва. Чаще всего наплывы образуются при выполнении горизонтальных сварных швов на вертикальной плоскости. Причины образования наплы­вов - большой сварочный ток, слишком длинная дуга, неправиль­ный наклон электрода, большой угол наклона изделия при сварке на спуск. При выполнении кольцевых швов наплывы образуют­ся при недостаточном или излишнем смещении электрода с зенита. В местах наплывов часто могут выявляться непровары, трещины и др.

Подрезы представляют собой продолговатые углубления (канав­ки), образовавшиеся в основном металле вдоль края шва. Они возникают в результате большого сварочного тока и длинной дуги. Основной причиной подрезов при выполнении угловых швов яв­ляется смещение электрода в сторону вертикальной стенки. Это вызывает значительный разогрев металла вертикальной стенки и его стекание при оплавлении на горизонтальную стенку. Подрезы приводят к ослаблению сечения сварного соединения и концент­рации в нем напряжений, что может явиться причиной разрушения.

Прожоги - это сквозные отверстия в шве, образованные в результате вытекания части металла ванны. Причинами их образо­вания могут быть большой зазор между свариваемыми кромками, недостаточное притупление кромок, чрезмерный сварочный ток, недостаточная скорость сварки. Наиболее часто прожоги образуют­ся при сварке тонкого металла и выполнении первого прохода многослойного шва. Прожоги могут также образовываться в резуль­тате недостаточно плотного поджатая сварочной подкладки или флюсовой подушки.

Непроваром называют местное несплавление кромок основного металла или несплавление между собой отдельных валиков при многослойной сварке. Непровары уменьшают сечение шва и вызы­вают концентрацию напряжений в соединении, что может резко снизить прочность конструкции. Причины образования непроваров - плохая зачистка металла от окалины, ржавчины и загрязне­ний, малый зазор при сборке, большое притупление, малый угол скоса кромок, недостаточный сварочный ток, большая скорость сварки, смещение электрода от центра стыка. Непровары выше допустимой величины подлежат удалению и последующей заварке.

Трещины, также как и непровары, являются наиболее опасными дефектами сварных швов. Они могут возникать как в самом шве, так и в околошовной зоне и располагаться вдоль или поперек шва. По своим размерам трещины могут быть макро- и микроскопиче­скими. На образование трещин влияет повышенное содержание углерода, а также примеси серы и фосфора.

Шлаковые включения, представляющие собой вкрапления шла­ка в шве, образуются в результате плохой зачистки кромок деталей и поверхности сварочной проволоки от оксидов и загрязнений. Они возникают при сварке длинной дугой, недостаточном сварочном токе и чрезмерно большой скорости сварки, а при многослойной сварке — недостаточной зачистке шлаков с предыдущих слоев. Шлаковые включения ослабляют сечение шва и его прочность.

Газовые поры появляются в сварных швах при недостаточной полноте удаления газов при кристаллизации металла шва. Причины пор — повышенное содержание углерода при сварке сталей, загряз­нения на кромках, использование влажных флюсов, защитных газов, высокая скорость сварки, неправильный выбор присадочной проволоки. Поры могут располагаться в шве отдельными группами, в виде цепочек или единичных пустот. Иногда они выходят на поверхность шва в виде воронкообразных углублений, образуя так называемые свищи. Поры также ослабляют сечение шва и его прочность, сквозные поры приводят к нарушению герметичности соединений.

Микроструктура шва и зоны термического влияния в значитель­ной степени определяет свойства сварных соединений и характе­ризует их качество.

К дефектам микроструктуры относят следующие: повышенное содержание оксидов и различных неметаллических включений, микропоры и   микротрещины, крупнозернистость, перегрев, пе­режог металла и др. Перегрев характеризуется чрезмерным укрупнением зерна и огрублением структуры металла. Более опасен пережог - наличие в структуре металла зерен с окисленными границами. Такой металл имеет повышенную хрупкость и не поддаетсяисправлению. Причиной пережога является плохая защита сварочной ванны при сварке, а также сварка на чрезмерно большой силе тока.

Методы неразрушающего контроля сварных соединений

К неразрушающим методам контроля качества сварных сое­динений относят внешний осмотр, контроль на непроницаемость (или герметичность) конструкций, контроль для обнаружения де­фектов, выходящих на поверхность, контроль скрытых и внутренних дефектов.

Внешний осмотр и обмеры сварных швов - наиболее простые и широко распространенные способы контроля их качества. Они являются первыми контрольными операциями по приемке готового сварного узла или изделия. Этим видам контроля подвергают все сварные швы независимо от того, как они будут испытаны в дальнейшем.

Внешним осмотром сварных швов выявляют наружные дефек­ты: непровары, наплывы, подрезы, наружные трещины и поры, смещение свариваемых кромок деталей и т.п. Визуальный осмотр производят как невооруженным глазом, так и с применением лупы с увеличением до 10 раз.

Обмеры сварных швов позволяют судить о качестве сварного соединения: недостаточное сечение шва уменьшает его прочность, слишком большое — увеличивает внутренние напряжения и дефор­мации. Размеры сечения готового шва проверяют по его параметрам в зависимости от типа соединения. У стыкового шва проверяют его ширину, высоту, размер выпуклости со стороны корня шва, в угловом - измеряют катет. Замеренные параметры должны соот­ветствовать ТУ или ГОСТам. Размеры сварных швов контролируют обычно измерительными инструментами или специальными шаб­лонами.

Внешний осмотр и обмеры сварных швов не дают возможности окончательно судить о качестве сварки. Они устанавливают только внешние дефекты шва и позволяют определить их сомнительные участки, которые могут быть проверены более точными способами.

Контроль непроницаемости сварных швов и соединений. Сварные швы и соединения ряда изделий и сооружений должны отвечать требованиям непроницаемости (герметичности) для различных жидкостей и газов. Учитывая это, во многих сварных конструкциях (емкости, трубопроводы, химическая аппаратура и" т.д.) сварные швы подвергают контролю на непроницаемость. Этот вид контроля производится после окончания монтажа или изготовления конст­рукции. Дефекты, выявленные внешним осмотром, устраняются до начала испытаний. Непроницаемость сварных швов контролируют следующими методами: капиллярным (керосином), химическим (аммиаком), пузырьковым (воздушным или гидравлическим давле­нием), вакуумированием или газоэлектрическими течеискателями.

Контроль керосином основан на физическом явлении капиллярности, которое заключается в способности керосина подниматься по капиллярным ходам - сквозным порам и трещинам. В процессе испытания сварные швы покрываются водным раство­ром мела с той стороны, которая более доступна для осмотра и выявления дефектов. После высушивания окрашенной поверхности с обратной стороны шов обильно смачивают керосином. Неплот­ности швов выявляют по наличию на меловом покрытии следов проникшего керосина. Появление отдельных пятен указывает на поры и свищи, полос - сквозных трещин и непроваров в шве. Благодаря высокой проникающей способности керосина обнару­живаются дефекты с поперечным размером 0,1 мм и менее.

Контроль аммиаком основан на изменении окраски некоторых индикаторов (раствор фенолфталеина, азотнокислой ртути) под воздействием щелочей. В качестве контролирующего реагента применяется газ аммиак. При испытании на одну сторону шва укладывают бумажную ленту, смоченную 5%-ным раствором индикатора, а с другой стороны шов обрабатывают смесью аммиака с воздухом. Аммиак, проникая через неплотности сварного шва, окрашивает индикатор в местах залегания дефектов.

Контроль воздушным давлением (сжатым воз­духом или другими газами) подвергают сосуды и трубопроводы, работающие под давлением, а также резервуары, цистерны и т.п. Это испытание проводят с целью проверки общей герметичности сварного изделия. Малогабаритные изделия полностью погружают в ванну с водой, после чего в него подают сжатый воздух под давлением, на 10 - 20% превышающим рабочее. Крупногабаритные конструкции после подачи внутреннего давления по сварным швам покрывают пенным индикатором (обычно раствор мыла). О нали­чии неплотностей в швах судят по появлению пузырьков воздуха. При испытании сжатым воздухом (газами) следует соблюдать пра­вила безопасности.

Контроль гидравлическим давлением при­меняют при проверке прочности и плотности различных сосудов, котлов, паро-, водо- и газопроводов и других сварных конструкций, работающих под избыточным давлением. Перед испытанием свар­ное изделие полностью герметизируют водонепроницаемыми за­глушками. Сварные швы с наружной поверхности тщательно просушивают обдувом воздухом. Затем изделие заполняют водой под избыточным давлением, в 1,5 - 2 раза превышающим рабочее, и выдерживают в течение заданного времени. Дефектные места определяют по проявлению течи, капель или увлажнению поверх­ности швов.

Вакуумному контролю подвергают сварные швы, которые невозможно испытать керосином, воздухом или водой и доступ к которым возможен только с одной стороны. Его широко применяют при проверке сварных швов днищ резерву­аров, газгольдеров и других листовых конструкций. Сущ­ность метода заключается в создании вакуума на одной стороне контролируемого участка сварного шва и реги­страции на этой же стороне шва проникновения воздуха через имеющиеся неплотно­сти. Контроль ведется с по­мощью переносной вакуум-камеры, которую устанавли­вают на наиболее доступную сторону сварного соедине­ния , предварительно смо­ченную мыльным раствором (рис. 2).

Рисунок 2 - Вакуумный контроль шва: 1 – вакуумметр, 2 - резиновое уплотнение, 3 - мыльный раствор, 4 - камера.

В зависимости от формы контролируемого изделия и типа соединения могут приме­няться плоские, угловые и сферические вакуум-камеры. Для созда­ния вакуума в них применяют специальные вакуум-насосы.

Люминесцентный контроль и контроль методом красок, называемый также капиллярной дефек­тоскопией, проводят с помощью специальных жидкостей, которые наносят на контролируемую поверхность изделия. Эти жидкости, обладающие большой смачивающей способностью, проникают в мельчайшие поверхностные дефекты - трещины, поры, непровары. Люминесцентный контроль основан на свойстве некоторых веществ светиться под действием ультрафиолетового облучения. Перед контролем поверхности шва и околошовной зоны очищают от шлака и загрязнений, на них наносят слой проникающей жид­кости, которая затем удаляется, а изделие просушивается. Для обнаружения дефектов поверхность облучают ультрафиолетовым излучением - в местах дефектов следы жидкости обнаруживаются по свечению.

Контроль методом красок заключается в том, что на очищенную поверхность сварного соединения наносится смачи­вающая жидкость, которая под действием капиллярных сил прони­кает в полость дефектов. После ее удаления на поверхность шва наносится белая краска. Выступающие следы жидкости обозначают места расположения дефектов.

Контроль газоэлектрическими течеискателям и применяют для испытания ответственных сварных конструкций, так как такие течеискатели достаточно сложны и дорогостоящи. В качестве газа-индикатора в них используется гелий. Обладая высокой проникающей способностью, он способен про­ходить через мельчайшие несплошности в металле и регистрируется течеискателем. В процессе контроля сварной шов обдувают или внутренний объем изделия заполняют смесью газа-индикатора с воздухом. Проникающий через неплотности газ улавливается щу­пом и анализируется в течеискателе.

Для обнаружения скрытых внутренних дефектов применяют следующие методы контроля.

Магнитные методы контроля основаны на об­наружении полей магнитного рассеяния, образующихся в местах дефектов при намагничивании контролируемых изделий. Изделие намагничивают, замыкая им сердечник электромагнита или поме­щая внутрь соленоида. Требуемый магнитный поток можно создать и пропусканием тока по виткам (3 - 6 витков) сварочного провода, наматываемого на контролируемую деталь. В зависимости от спо­соба обнаружения потоков рассеяния различают следующие методы магнитного контроля: метод магнитного порошка, индукционный и магнитографический. При методе магнитного порошка на повер­хность намагниченного соединения наносят магнитный порошок (окалина, железные опилки) в сухом виде (сухой способ) или суспензию магнитного порошка в жидкости (керосин, мыльный раствор, вода - мокрый способ). Над местом расположения дефек­та создадутся скопления порошка в виде правильно ориентирован­ного магнитного спектра. Для облегчения подвижности порошка изделие слегка обстукивают. С помощью магнитного порошка выявляют трещины, невидимые невооруженным глазом, внутрен­ние трещины на глубине не более 15 мм, расслоение металла, а также крупные поры, раковины и шлаковые включения на глубине не более 3 - 5 мм. При индукционном методе маг­нитный поток в изделии наводят электромагнитом переменного то­ка. Дефекты обнаруживают с по­мощью искателя, в катушке кото­рого под воздействием поля рассе­яния индуцируется ЭДС, вызы­вающая оптический или звуковой сигнал на индикаторе. При магнитографическом мето­де (рис. 3) поле рассеяния фик­сируется на эластичной магнитной ленте, плотно прижатой к поверх­ности соединения. Запись воспроизводится на магнитографическом дефектоскопе. В результате срав­нения контролируемого соединения с эталоном делается вывод о качестве соединения.

Рисунок 3 - Магнитная запись дефек­тов на ленту: 1 - подвижный электромагнит, 2 - де­фект шва, 3 - магнитная лента.

Радиационные методы контроля являются на­дежным и широко распространенными методами контроля, осно­ванными на способности рентгеновского и гамма-излучения про­никать через металл. Выявление дефектов при радиационных ме­тодах основано на разном поглощении рентгеновского или гамма-излучения участками металла с дефектами и без них. Сварные соединения просвечивают специальными аппаратами. С одной стороны шва на некотором расстоянии от него помещают источник излучения, с противоположной стороны плотно прижимают кассету с чувствительной фотопленкой (рис. 4). При просвечивании лучи проходят через сварное соединение и облучают пленку. В местах, где имеются поры, шлаковые включения, непровары, крупные трещины, на пленке образуются темные пятна. Вид и размеры дефектов определяют сравнением пленки с эталонными снимками. Источниками рентгеновского излучения служат специальные аппа­раты (РУП-150-1, РУП-120-5-1 и др.).


Рисунок 4 - Схема радиационного просвечивания швов: а - рентгеновское, б - гамма-излучением:   1 - источник излу­чения, 2 - изделие, 3 - чувствительная пленка

Рентгенопросвечиванием целесообразно выявлять дефекты в деталях толщиной до 60 мм. Наряду с рентгенографированием (экспозицией на пленку) приме­няют и рентгеноскопию, т.е. получение сигнала о дефектах при просвечивании металла на экран с флуоресцирующим покрытием. Имеющиеся дефекты в этом случае рассматривают на экране. Такой способ можно сочетать с телеви­зионными устройствами и конт­роль вести на расстоянии.

При просвечивании сварных соединений гамма-излучением источником излучения служат ра­диоактивные изотопы: кобальт-60, тулий-170, иридий-192 и др. Ам­пула с радиоактивным изотопом помещается в свинцовый контей­нер. Технология выполнения просвечивания подобна рентгеновско­му просвечиванию. Гамма-излучение отличается от рентгеновского большей жесткостью и меньшей длиной волны, поэтому оно может проникать в металл на большую глубину. Оно позволяет просвечи­вать металл толщиной до 300 мм. Недостатками просвечивания гамма-излучением по сравнению с рентгеновским являются мень­шая чувствительность при просвечивании тонкого металла (менее 50 мм), невозможность регулирования интенсивности излучения, большая опасность гамма-излучения при неосторожном обращении с гамма-аппаратами.

Ультразвуковой контроль основан на способно­сти ультразвуковых волн проникать в металл на большую глубину и отражаться от находящихся в нем дефектных участков. В процессе контроля пучок ультразвуковых колебаний от вибрирующей пла­стинки-щупа (пьезокристалла) вводится в контролируемый шов. При встрече с дефектным участком ультразвуковая волна отража­ется от него и улавливается другой пластинкой-щупом, которая преобразует ультразвуковые колебания в электрический сигнал (рис. 5).

Рисунок 5 - Ультразвуковой контроль швов: 1 - генератор УЗК, 2 - щуп, 3 - усилитель, 4 - экран.

Эти колебания после их усиления подаются на экран электронно-лучевой трубки дефектоскопа, которые свидетельству­ют о наличии дефектов. По характеру импульсов судят о протяжен­ности дефектов и глубине их залегания. Ультразвуковой контроль можно проводить при одностороннем доступе к сварному шву без снятия усиления и предварительной обработки поверхности шва.

Ультразвуковой контроль имеет следующие преимущества: высокая чувствительность (1 - 2%), позволяющая обнаруживать, измерять и определять местонахождение дефектов площадью 1 - 2 мм2; большая проникающая способность ультразвуковых волн, позволяющая контролировать детали большой толщины; возможность контроля сварных соединений с односторонним под­ходом; высокая производительность и отсутствие громоздкого обо­рудования. Существенным недостатком ультразвукового контроля является сложность установления вида дефекта. Этот метод приме­няют и как основной вид контроля, и как предварительный с последующим просвечиванием сварных соединений рентгеновским или гамма-излучением.

Методы контроля с разрушением сварных соединений

К этим методам контроля качества сварных соединений отно­сятся механические испытания, металлографические исследования, специальные испытания с целью получения характеристик сварных соединений. Эти испытания проводят на сварных образцах, выре­заемых из изделия или из специально сваренных контрольных соединений - технологических проб, выполненных в соответствии с требованиями и технологией на сварку изделия в условиях, соответствующих сварке изделия.

Целью испытаний является: оценка прочности и надежности сварных соединений и конструкций; оценка качества основного и присадочного металла; оценка правильности выбранной техноло­гии; оценка квалификации сварщиков.

Свойства сварного соединения сопоставляют со свойствами основного металла. Результаты считаются неудовлетворительными, если они не соответствуют заданному уровню.

Механические испытания проводятся по ГОСТ 6996-66, предус­матривающему следующие виды испытаний сварных соединений и металла шва: испытание сварного соединения в целом и металла разных его участков (наплавленного металла, зоны термического влияния, основного металла) на статическое растяжение, статисти­ческий изгиб, ударный изгиб, стойкость против старения, измере­ние твердости.

Контрольные образцы для механических испытаний выполняют определенных размеров и формы.

Испытаниями на статическое .растяжение определяют проч­ность сварных соединений. Испытаниями на статический изгиб определяют пластичность соединения по величине угла изгиба до образования первой трещины в растянутой зоне. Испытания на статический изгиб проводят на образцах с продольными и попереч­ными швами со снятым усилением шва заподлицо с основным металлом. Испытаниями на ударный изгиб, а также разрыв опре­деляют ударную вязкость сварного соединения. По результатам определения твердости судят о структурных изменениях и степени подкалки металла при охлаждении после сварки.

Основной задачей металлографических исследований являются установление структуры металла и качества сварного соединения, выявление наличия и характера дефектов. Металлографические исследования включают в себя макро- и микроструктурный методы анализа металлов.

При макроструктурном методе изучают макрошли­фы и изломы металла невооруженным глазом или с помощью лупы. Макроисследование позволяет определить характер и расположение видимых дефектов в разных зонах сварных соединений.

При микроструктурном анализе исследуется струк­тура металла при увеличении в 50 - 2000 раз с помощью оптических микроскопов. Микроисследование позволяет установить качество металла, в том числе обнаружить пережог металла, наличие оксидов, засоренность металла шва неметаллическими включениями, вели­чину зерен металла, изменение состава его, микроскопические трещины, поры и некоторые другие дефекты структуры. Методикаизготовления шлифов для металлографических исследований за­ключается в вырезке образцов из сварных соединений, шлифовке, полировке и травлении поверхности металла специальными травителями. Металлографические исследования дополняются измере­нием твердости и при необходимости химическим анализом металла сварных соединений. Специальные испытания проводят с целью получения характеристик сварных соединений, учитывающих усло­вия эксплуатации сварных конструкций: определение коррозион­ной стойкости для конструкций, работающих в различных агрес­сивных средах; усталостной прочности при циклических нагружениях; ползучести при эксплуатации в условиях повышенных температур и др.

Применяют также и методы контроля с разрушением изделия. В ходе таких испытаний устанавливают способность конструкций выдерживать заданные расчетные нагрузки и определяют разруша­ющие нагружения, т.е. фактический запас прочности. При испыта­ниях изделий с разрушением схема нагружения их должна соответ­ствовать условиям работы изделия при эксплуатации. Число изде­лий, подвергающихся испытаниям с разрушением, устанавливается техническими условиями и зависит от степени их ответственности, системы организации производства и технологической отработан­ности конструкции.

Другие статьи:

Классификация сварных швов | Мир сварки

 Классификация сварных швов

Сварной шов — участок сварного соединения, образовавшийся в результате кристаллизации (затвердевания) расплавленного металла или в результате пластической деформации при сварке давлением или сочетания кристаллизации и деформации.

Сварные швы подразделяются:

 Классификация по положению в пространстве
1 - нижнее положение

2 - горизонтальное или вертикальное положения

3 - потолочное положение

Сварка швов в нижнем положении по сравнению со сваркой других швов наиболее удобна и экономична (при прочих равных условиях).

 Классификация по протяженности

По протяженности швы подразделяют:

Сплошные  
Прерывистые цепные
шахматные
 Классификация по отношению к направлению действующих усилий

Швы подразделяются:

Продольный
(фланговый)
усилие параллельно оси шва
Поперечный
(лобовой)
ось шва перпендикулярна направлению действия усилий
Комбинированный комбинация продольного и поперечного швов
Косой ось шва располагается под углом к направлению действующих усилий
 Классификация по форме наружной поверхности

Швы подразделяются:

Выпуклые швы лучше работают в соединениях при статических нагрузках, однако чрезмерный наплыв приводит к лишнему расходу электродного металла и поэтому выпуклые швы неэкономичны.

Плоские и вогнутые швы лучше работают при динамических и знакопеременных нагрузках, так как нет резкого перехода от основного металла к сварному шву. В противном случае создается концентрация напряжений, от которых может начаться разрушение сварного шва.

 Классификация по условиям работы сварного узла

В процессе эксплуатации изделия сварные швы подразделяют:

  • рабочие — которые непосредственно воспринимают нагрузки
  • нерабочие (соединительные или связующие) — предназначенные только для скрепления частей или деталей изделия
 Классификация по ширине

Швы делятся на:

  • ниточные
  • уширенные

Ниточные швы обычно выполняют при сварке тонкого металла, а уширенные швы - при наплавочных работах.

 Классификация по числу проходов (слоев)

По числу проходов (слоев) сварные швы подразделяются:

  • однопроходные (однослойные)
  • многопроходные (многослойные)

При сварке каждый слой многослойного стыкового шва, кроме усиления и подварочного шва, отжигается при наложении следующего слоя. В результате такого теплового воздействия улучшается структура и механические свойства металла шва.

 Классификация по характеру выполнения
  • односторонние
  • двусторонние

 ЛИТЕРАТУРА

  • Сварочные работы / В.И. Маслов. - М.: Издательский центр «Академия», 2002. - 240 с.

Сварное соединение и свойства SWC

Непременным этапом изготовления металлоконструкций является устранение возможных дефектов и несоответствий, возникающих при сварке. Дополнительный тепловой цикл, сопровождающий повторное выполнение сварного шва, несомненно, отрицательно сказывается на механических свойствах ЗТВ. В статье представлены результаты технологических исследований влияния повторной дуговой сварки МАГ, выполняемой в рамках ремонта, на свойства ЗТВ стыковых соединений из стали S690QL.

В различных отраслях промышленности в последнее время увеличилось применение высокопрочных сталей, как термически обработанных, так и термомеханически прокатанных. Эти стали чаще всего используются в судостроении, при строительстве дорог и мостов, в гидроэнергетике и атомной энергетике, в морских сооружениях (например, нефтяных вышках), при строительстве трубопроводов и строительной техники. Использование высокопрочной стали позволило изготавливать значительно более легкие конструкции, с меньшими габаритами, но с соответствующими прочностными характеристиками.В результате уменьшения массы и габаритов также снизились затраты на транспортировку и сварку, так как количество дополнительного материала, а значит, и время на выполнение сварного соединения значительно меньше [1-3].

Во многих отраслях современной тяжелой промышленности (трубостроительство, производство строительных машин) целью является повышение эффективности производства и снижение себестоимости продукции (повышение конкурентоспособности), в том числе и в случае высокопрочных металлоконструкций [4-6].Поэтому необходимо искать решения, которые позволят ускорить сварочные работы (увеличить скорость сварки или толщину слоя, особенно проплавленного).

Аспектом, сопровождающим выполнение сварных соединений, особенно при использовании ручных способов сварки, является возникновение различных дефектов сварки. Предварительное рассмотрение видов дефектов, наиболее часто возникающих при сварке высокопрочных точечных сталей и подлежащих ремонту, показало, что это поперечные трещины, пузырчатые карманы, равномерно распределенные пузыри, прихват кромок и непровары.Эти несоответствия чаще всего устраняются шлифовкой или дуговой строжкой. В доступной литературе сведений о влиянии термической строжки и ремонтной сварки на свойства ремонтируемых сварных соединений не обнаружено.

В статье представлено влияние ремонтной сварки на механические и структурные свойства ЗТВ в сварном соединении МАГ из стали S690QL толщиной 12 мм.

Основной и дополнительный материал
Основной материал – стальной лист S690QL согласно PN-EN 10025-6:2009 с размерами 350 x 200 x 12 мм.Минимальные нормативные механические свойства стали: R m ≥ 770 МПа; R и ≥ 690 МПа; А 5 ≥ 14%; минимальная отключающая работа кВ ≥ 30 Дж при -40°С. Анализ химического состава проводили методом оптико-эмиссионной спектрометрии с искровым возбуждением на спектрометре Q4 TASMAN фирмы Bruker. Результаты испытаний представлены в таблице 1.

Таблица 1. Результаты анализа химического состава стали S690QL

В качестве дополнительного материала в испытаниях использовалась электродная проволока Böhler Union X96 диаметром 1,2 мм (классификация: PN-EN ISO 16834-A-G 89 5 M21 Mn4Ni2.5CrMo).Механические свойства металла шва по данным изготовителя: Р и ≥ 930 МПа; R м ≥ 980 МПа; Прочность на разрыв ≥ 47 Дж при -50∞C. Был выбран дополнительный материал, металл шва которого будет гарантировать разрыв соединения вне шва, что позволило определить механические свойства ЗТВ. В качестве защитного газа использовалась смесь PN-EN ISO 14175-M21-ArC-18.

Ход и результаты испытаний
Методом МАГ были изготовлены два пробных соединения, одно из которых подвергалось механическим испытаниям сразу после сварки.Второй стык был прорезан точно по оси шва (ленточной пилой) и заново снят фаску (резкой) на такую ​​глубину, чтобы удалить сварной шов, не нарушая ЗТВ. Подготовленные листы повторно сваривали и только после этого вторично проводили механические испытания соединения.

Края основного материала были подготовлены механическим снятием фаски (рис. 1).

Рис. 1. Подготовка стыка к сварке

Перед прихваткой кромки основного материала были обезжирены ацетоном, а затем прихвачены тремя швами длиной 5 мм.Перед сваркой прихваточные стальные пластины закреплялись на сварочном столе с помощью эксцентриковых зажимов. Испытательные соединения выполнялись на автоматизированной сварочной станции MultiSurfacer D2 Weld (производства Welding Alloys), оснащенной микропроцессорной системой управления, позволяющей задавать требуемую скорость сварки, а также многократное позиционирование сварочного держателя, установленного в опорном узле сварки. Станция. Температуру предварительного нагрева устанавливали равной 100°С, а межпроходную температуру поддерживали ниже 250°С.Температуру измеряли контактным термометром. Оба соединения были выполнены в положении PA с параметрами, указанными в таблице 2.

Таблица 2. Параметры выполнения сварных соединений

Выполненные сварные соединения обозначают римскими цифрами I - в случае однократного сварного соединения и II - в случае двукратного сварного соединения.

Визуальные и радиографические испытания
После изготовления контрольных соединений были проведены визуальные испытания в соответствии с ПН-ЕН ИСО 17637:2017-02 «Контроль неразрушающий сварных соединений. Визуальный контроль сварных соединений».Их цель состояла в том, чтобы определить, есть ли дефекты сварки в сварном соединении, дисквалифицирующие соединение как выполненное на уровне качества B в соответствии с PN-EN ISO 5817: 2014. В обоих испытанных случаях дефектов сварки в соединении не наблюдалось. Оба соединения выполнены на уровне качества B.

.

Затем соединения были подвергнуты радиографическому исследованию, чтобы проверить, свободны ли соединения от дефектов сварки, таких как липкие пятна и пористость. Испытания проводились в соответствии со стандартом PN-EN ISO 17636-1:2013.В суставах было обнаружено несколько внутренних волдырей, что позволило квалифицировать суставы для дальнейших испытаний на уровне качества B. Рентгенограммы показаны на рисунке 2.

Рис. 2. Рентгенограмма соединения, сваренного один раз (а) и сваренного дважды (б)

Испытание на растяжение
Испытание на растяжение проводилось в соответствии с PN-EN ISO 4136:2013 на испытательной машине Instron 4210.Из каждого стыка готовили по три образца. В любом случае, как и предполагалось, образец был сломан в SWC. Результаты испытаний на растяжение представлены в таблице 3.

Таблица 3. Результаты испытаний на растяжение
сварных соединений из стали S690QL

Прочность на растяжение испытанных сварных соединений составила 841 ÷ 852 МПа. Среднее значение трех измерений для одинарного сварного соединения составило 849,7 МПа, а для двойного сварного соединения — 843,7 МПа.В обоих случаях прочность превышала минимальную нормативную прочность, которая для стали S690QL составляет 770 МПа (согласно PN-EN 10025-6:2009). Разница в прочности одинарного и двойного сварного соединения составляет 6 МПа. Следовательно, она ничтожна и не может свидетельствовать об отрицательном влиянии двойного термического цикла сварки на предел прочности соединения.

Испытание на удар
Испытание на удар проводили в соответствии с требованиями PN-EN ISO 5173:2010, определяя работу разрушения для образца размерами 10x10x55.Для испытаний были изготовлены 5 образцов с надрезом в ЗТВ и 3 образца с надрезом в сварном шве. Испытание проводилось при -40∞C. Результаты испытаний представлены в таблице 4 и на рисунке 3.

Таблица 4. Результаты испытаний на разрыв одно- и двухкратного соединения
Рис. 3. Ударная вязкость ЗТВ и металла шва в соединении
однократно (I) и двукратно (II)


Для обоих сварных швов работа разрушения составила 42 ÷ 60 Дж, а в среднем по обоим случаям 57 Дж.Поэтому разницы в работе разрыва обоих сварных швов не наблюдалось. В случае ЗТВ работа на разрыв для обоих случаев уже существенно отличалась. В случае однократного соединения работа разрушения составила 110 ÷ 142 Дж, а в среднем по пяти испытаниям – 129 Дж. В случае двукратного соединения работа составила 50 ÷ 60 Дж, а среднее значение пять измерений 57 Дж.

Макроскопические и макроскопические металлографические исследования
Макроскопические металлографические исследования проводились с использованием стереоскопического микроскопа при 25-кратном увеличении, а микроскопические металлографические исследования проводились при 200-кратном и 500-кратном увеличении.Микроскопические металлографические исследования проводили с помощью светового микроскопа Nikon Eclipse MA200.Исследование микроструктуры проводили в зоне термического влияния в середине толщины шва. Основное внимание в исследованиях уделялось ЗТВ как области со значительной разницей механических свойств в обоих соединениях. Результаты макроскопических металлографических испытаний показаны на рис. 4, а микроскопических металлографических испытаний показаны на рис. 5.

Рис.4. Макроструктура одиночного сварного соединения (а)
и двойного сварного соединения (б)


Макроструктурные испытания показали отсутствие дефектов сварки, таких как склеивание, в обоих соединениях. Более того, форма линии сплавления в обоих случаях очень похожа и подтверждает, что условия сварки в обоих случаях были сравнимы.

Мироструткура SWC в одинарном сварном соединении (а) и
дважды с выбранными примерными местами
остаточного аустенита (б)


Микроскопические металлографические исследования показали, что структура ЗТВ одиночного соединения является мартенситной с небольшими выделениями карбидов по границам зерен (рис.4а). С другой стороны, в случае двукратного соединения структура материала ЗТВ является мартенситной с остаточным аустенитом и многочисленными выделениями карбидов по границам зерен (рис. 4б).

Измерение твердости по поперечному сечению сварных соединений
Измерение твердости по поперечному сечению сварных соединений проводили с помощью прибора KB50BVZ-FA от KB Prüftechnik с нагрузкой на индентор 98,1 Н (HV10). Измерение проводили от оси сварного шва в обе стороны, устанавливая расстояние между точками измерения через 1 мм, а линия измерения проходила посередине толщины шва.Результаты измерения твердости показаны на рисунке 6.

Рис. 6. Распределение твердости по поперечному сечению одинарного сварного соединения
(Соединение I) и двухсварного соединения (Соединение II)

Анализ результатов испытаний
Визуальные и рентгенографические испытания выполненных сварных соединений показали отсутствие несоответствий в этих соединениях, геометрия которых лишала бы соединения класса качества В по ПН-ЕН ИСО 5817:2014.В спае I наблюдалось несколько пузырьков газа размером не более 1 мм (рис. 2).

Испытание на прочность на растяжение проводилось путем растяжения трех образцов для каждого соединения. В каждом из испытанных случаев образец разрушался в ЗТВ основного материала. В случае соединения I средняя прочность R м по трем измерениям составила 849,7 МПа, а в случае соединения II средняя прочность составила 843,7 МПа, т. е. она была ниже на 6 МПа. Исходя из такой небольшой разницы между значениями прочности обоих соединений, можно сделать вывод, что двукратная сварка не снижает предела прочности соединений.Испытания на удар, проведенные в сварном шве, показали, что работа разрушения одинарного и двойного шва составляет 53 и 57 Дж соответственно. В обоих случаях металл шва представляет собой переплавленный связующий материал с небольшим количеством переплавленного основного материала из зоны сплавления. Таким образом, в обоих случаях наплавленный металл представляет собой материал, подвергнутый одинаковому количеству циклов термической сварки. С другой стороны, в ЗТВ наблюдались существенные различия в работе обоих суставов на разрыв. В случае соединения, выполненного один раз, средняя (из пяти испытаний) работа разрушения составила 129 Дж, а в случае соединения, выполненного дважды, в среднем всего 57 Дж.Столь большие различия в работе на разрыв, испытанной в ЗТВ обоих соединений, означали, что микроскопические металлографические испытания проводились в обоих соединениях только для этой области.

Микроскопические металлографические исследования показали, что в случае соединения № I структура ЗТВ состоит из отпущенного мартенсита с небольшим количеством карбидов, отложившихся по границам зерен. В этом случае незначительное выделение карбидов обусловлено многократным термическим циклом, сопровождающим наложение последовательных валиков (6 проходов).В соединении, выполненном дважды (соединение II), в микроструктуре СПК наблюдались значительные количества карбидов, отложившихся по границам зерен, и наличие остаточного аустенита в мартенситной матрице. Вероятный механизм образования остаточного аустенита заключается в том, что при медленном охлаждении зоны ЗТВ путем длительного нахождения в интервале температур 800÷500°С аустенит постепенно обогащается углеродом. Каждый последующий термический цикл, сопровождающий наложение последовательных наплавленных валиков, вызывает еще большее обогащение аустенита углеродом.После охлаждения до температуры окружающей среды часть аустенита превращается в очень твердый и хрупкий мартенсит, а часть настолько обогащается углеродом, что температура начала мартенситного превращения Ms оказывается ниже температуры окружающей среды. Этот аустенит термически стабилен, но не стабилен механически. Вполне вероятно, что во время испытания на разрушение он подвергается напряжению, превращаясь в мартенсит, что способствует зарождению трещины и, таким образом, снижает ударную вязкость зоны термического влияния.Кроме того, наличие многочисленных карбидов, отложившихся на границах зерен, дополнительно снижает ударную вязкость ЗТВ. Представленный выше механизм снижения удара ЗТВ может свидетельствовать о том, что обеспечение ускоренного охлаждения после каждого наплавленного валика и использование параметров сварки, ограничивающих количество подводимого в соединение тепла, благотворно повлияют на ударную вязкость сварного соединения. Также можно предположить, что повторное удаление сварного шва и выполнение соединения в третий раз еще больше снизит ударную вязкость ЗТВ, так что условие минимальной стандартной работы на разрыв для стали S690QL, т.е.кВ ≥ 30 Дж для стандартного образца при -40°С.

Измерение твердости, проведенное на поперечном сечении сварных соединений, показало, что твердость основного материала HV10 составляет 265 ÷ 275 единиц. В сварном шве и ЗТВ, непосредственно примыкающих к линии сплавления, твердость в обоих испытанных случаях составила 320 ÷ 355 HV10. В зоне разупрочнения ЗТВ твердость одинарного стыка составила 250÷255 HV10, а в случае двойного стыка 242÷249 HV10. Следовательно, разупрочнение в ЗТВ при двукратном соединении было несколько выше, чем при однократном соединении.

Приложения

1. Двойной термический цикл, сопровождающий ремонтную сварку листов стали S690QL толщиной 12 мм, позволяет выполнять соединения, отвечающие требованиям PN-EN ISO 15614-1.

2. Двойной термический цикл сварки листов S690QL толщиной 12 мм (имитация ремонтной сварки) приводит к незначительному снижению предела прочности ЗТВ, который в случае одиночного сварного соединения составил 849,7 МПа, а в случае двойной сварной шов, 843,7 МПа.

3. Двойной термический цикл сварки листов стали S690QL толщиной 12 мм (имитация ремонтной сварки) снижает разрушающую работу в ЗТВ со 129 Дж до 57 Дж, что позволяет сделать вывод, что трехкратная сварка, относящаяся к ремонтным работам, позволит невозможно выполнить условие минимальной нормативной работы на разрыв, которая для стали S690QL составляет 30 Дж при -30°С.

4. Проведенные микроскопические металлографические исследования показали, что двойная сварка вызывает увеличение выделения карбидов на границах зерен и наличие остаточного аустенита в ЗТВ.Оба структурных компонента, вероятно, вызывают значительное снижение ударной вязкости соединения в ЗТВ.

Литература

  1. Маклес К.: Свариваемость и избранные свойства соединений закаленных сталей. Сварочное обозрение, 2014, №8.
  2. Górka J .: Свойства сварных швов термомеханически обработанных сталей с высоким пределом текучести. Сварочное обозрение, 2011, № 12.
  3. Węglowski M.: Современные и закаленные стали – свойства и преимущества их применения.Вестник Института сварки, 2012, № 4.
  4. Тасак Э., Зевец А.: Свариваемость строительных материалов. Издательство JAK, Краков, 2009.
  5. Кузьмикова Л., Ли Х., Норриш Дж., Пан З., Ларкин Н.: Разработка безопасных оптимизированных процедур сварки высокопрочной стали Q&T, свариваемой аустенитными присадочными материалами. Солдаг. Insp. Сан-Паулу, 2013 г., т. 18, № 2.
  6. Адамчик Дж., Грайкар А.: Термическая обработка и механические свойства низкоуглеродистой стали с двухфазной микроструктурой.Журнал достижений в области материаловедения и технологии производства, 2007 г., т. 22, № 1.


Автор: д-р инж. Мацей Ружански, д-р инж. Томаш Пфайфер, M.Sc. Войцех Гробош - Институт сварки, кафедра сварочных технологий

.

Соединения сварных конструкций, 2018 (книга)

Соединения сварных конструкций, 2018 (книга) - Profinfo.pl Отзывы о нас к конструкции сварных соединений. После характеристики сварных конструкций обсуждались различные марки стали и принципы их выбора для этих конструкций, большое место уделялось сварочным напряжениям и деформациям, а также технологическим, хрупким, пластинчатым и усталостным трещинам.Информация, необходимая для проектирования, расчета и определения размеров сварных соединений, была дана вместе с примерами решений. Описана сварка элементов конструкций металлоконструкций, резервуаров, сосудов под давлением, трубопроводов, машин и устройств. Представлены способы сварки конструкционных сталей и рассмотрен неразрушающий контроль стальных сварных соединений.

Информация

Издатель: Wydawnictwo Naukowe PWN

Wydawnictwo Naukowe PWN является хорошо известным брендом на протяжении многих лет, в настоящее время состоящим из нескольких компаний.В издательскую группу входят: Wydawnictwo Szkolne PWN, PZWL Wydawnictwo Lekarskie, Mała Lingua & Lingua Tenns Space, Poleng.pl, SuperMemo World, OSDW Azymut, Ravelo и Yurincom Inter (Украина), а также сеть книжных магазинов PWN. Совместные усилия группы составляют более 500 новых наименований в год, включая книги, электронные книги и мультимедийные продукты.

Год издания: 2018

Выпуск: 3

Количество страниц: 460

Обложка: мягкая

Формат: 16.0x23.0cm

Версия издания: Книжная бумага

ISBN: 9788301199777

Код товара: 92800700100KS

{{варианты [варианты] .name}} {{prices.brutto}} PLN

{{variant.name}} {{variant.price_brutto}} $ {{variant.price_promotion_brutto}} $

В корзину Уведомить о запуске В корзину

Книга будет напечатана специально для вас кооперативом типография с нами.

Товар добавлен в корзину Перейти в корзину

Стоимость корзины будет конвертирована в PLN.
Ваш заказ будет рассчитан в польской валюте (ZŁ).

Архивный продукт в настоящее время недоступны

Regular Price: Pln 79.00

Ваша цена со скидкой Ваша цена со скидкой -10%

71.11 PLN PLN 71.11

0, 00