Самодельный электролизер


Газогенератор (электролизер) своими руками. на портале Сделай сам

Газогенератор (электролизер)своими руками (эксперимент).

Решил сделать газогенератор по разложению воды на кислород и водород, чтобы можно было паять твердыми припоями и установить в авто для полного сгорания бензина. В интернете много отчетов по уже изготовленным генераторам, якобы даже работающим.

Нашел нержавейку, нарезал болгаркой 11 пластин 15х15 мм., собрал. Из них потом сделал восьмиугольники. Прокладки резал из авто камеры. Когда вырезал пластины три штуки оставил с одним углом, чтобы было удобнее подключать питание, 8-восьмиугольные. Затем пластины я прошел бруском, чтобы лучше образовывались пузырьки газа. Перед сборкой наклеил с одной стороны на пластины прокладки и во время сборки использовал клей на прокладках. Так собирать удобнее и герметичнее. Ну раз готов генератор, значит можно его испытывать. Залил в полторашку воды, подключил выпрямитель на 14 вольт, 7 ампер, а в результате НИЧЕГО.

Залез опять в интернет, оказалось, что не только у меня, но и ни у кого на воде генератор не работает. А чтобы его расшевелить нужно залить в него электролит. Предложений по приготовлению тоже много- Мистер Мускул, Крот, каустическая сода, пищевая сода, главное, чтобы в его составе был NaOH. На чистой воде генератор работать не хочет. Правда кто-то сделал генератор на воде, но после этого его никто больше не видел, а описание и чертеж не сохранились. Решил сделать электролит из пищевой соды. Налил кипяченой воды,  насыпал соды и мешал, пока она не растворилась полностью (насыщенный раствор). Подключил по временной схеме полторашку с содой, на выходе трубку с иглой от шприца, подал напряжение и стал ждать результата, который не заставил себя ждать. Генератор заработал.

Подключение делал по разному и как в журнале Моделист-конструктор первая и последняя пластины (так хуже работает) и минус на 1 и последнюю пластины, а плюс в середине ( так газа вырабатывается больше). Пробовал подключать другой блок питания 18 вольт 13 ампер, с ним генератор работает веселее. В итоге пришел к выводу, что чем больше площадь пластин и ампер, тем больше газа выделяется.

Эксперимент удался, теперь буду делать газогенератор из 50 пластин размером 20х20 мм. Чтобы уйти от применения гидро затвора на выходе, хочу использовать бачок омывателя от ВАЗ, то есть подача и обратка внизу бачка, ниже бачка генератор, а выход газа сверху. Будет постоянное пополнение электролитом самого генератора, а так же электролит будет дополнительно выполнять роль гидрозатвора, а сверху бачка-омывателя выход газа на горелку. Делать буду генератор мобильным, чтобы можно было его установить на авто и в любое время можно было его снять и использовать в качестве горелки для пайки.

Рисовать ничего не стал, так как в интернете очень много работ, можете посмотреть там. Думаю, что достаточно фотоотчета.


Прислал в редакцию: Николай Евдокимов.

 

Активатор воды своими руками: схемы изготовления, советы мастеров

И хотя активаторы воды стоят не слишком дорого, иногда случаются ситуации, что человек просто не может приобрести в данный момент времени столь необходимый ему прибор. Это вполне исправимо: простой активатор воды можно сделать своими руками.

Что надо знать перед началом работ

Первое требование к каждому человеку, взявшемуся за подобный труд — разбираться в теме. Это правильно: придется руководствоваться электрическими схемами.

Второе правило — создавать подобное устройство только в самых безвыходных ситуациях. Вот здесь надо пояснить подробнее: никогда электроактиватор воды, собранных в «полевых» условиях, не даст того качественного результата, который гарантирует производитель от предприятия.

Этот вариант, действительно, нужен лишь для экстренных случаев (например, когда на даче закончилась чистая вода). Разница в следующем.

  1. Покупной прибор направлен на глубокую очистку, в том числе от различных примесей. Он способен работать с большими объемами, сохраняя при этом необходимое качество. К тому же, гарантийный срок заявляет о долгосрочности работы устройства.
  2. «Домашний» аппарат дает очень низкие качества по очистке. Использовать его лучше всего в случае разовой необходимости. Самоделка не поможет справиться с жесткостью и железистостью.

По мнению специалистов, постоянное употребление воды, очищенной самодельным способом, нанесет урон здоровью. Часто дома нереально подобрать актуальный материал нержавеющей стали для изготовления одного из анодов. Это приведет к тому, что при прохождении через такой электрод тока, в воду (а потом и в организм) будут поступать ионы вредных металлов никеля, ванадия, хрома, молибдена. Длительное их пребывание и накопление в организме приводи к тяжелым заболеваниям.

После использования промышленных аппаратов-активаторов подобного не бывает — здесь для катодного изготовления используется титановое покрытие или специальный пищевой вид нержавеющей стали. А для анода берут платину или другие спецпокрытия. В домашних условиях, естественно, таких ресурсов нет.

Если после таких предупреждений остались решимость и актуальность в изготовлении самодельного активатора, то стоит ознакомиться с дальнейшим материалом.

Читайте также: что такое электроактиватор воды.

 Способы создания активаторов воды

Самый естественный и эффективный магнитный активатор воды — это помещенный в нее кусок кремния. После этого емкость надо оставить настаиваться на несколько дней. Однако это не всегда удобно, если стоит острая нужда в очистке, но есть и другие, более сложные варианты изготовления.

Прибор с одной емкостью

Для того, чтобы начать создание самодельного прибора, необходимо ознакомиться с его конструкцией и схемой действия. Сам процесс электролиза выглядит следующим образом:

  • водород накапливается на отрицательном катоде;
  • кислород остается на аноде и таким образом вода расщепляется на два отдельных компонента.

Самое сложное в данной ситуации – провести отделение кислой фракции. Для облегчения работы используется специальная диафрагма. Особенность ее в том, что она должна обладать сразу двумя различными свойствами. Во-первых, через диафрагму должен проникать раствор. Во-вторых, через нее не должны проходить продукты электролиза. Чтобы достичь этого, ее обычно изготавливают из брезента, используемого для противогазных сумок или пожарных рукавов.

При изготовлении оборудования особое внимание необходимо уделить электродам. Лучше всего, если они будут изготовлены из нержавеющей стали, которая применяется в пищевых целях. Однако в любом случае сталь, как и все другие металлы, под действием электрического тока будет постепенно растворяться. Все примеси стали при растворении попадают в жидкость. Поэтому лучше всего использовать или графитовые стержни или угольно-кремниевые электроды.

Длина электродов зависит от объема банки

Кроме того, важной частью электролизера является емкость. В нее помещаются электроды, и заливается вода. В самодельных аппаратах для этого может использоваться обыкновенная стеклянная банка. Для работы устройства необходима электросеть переменного тока. Роль выпрямителя играет мощный диод или выпрямительный мостик. Если выбран второй вариант, то производительность устройства будет значительно выше.

К выбору диода следует отнестись серьезно. Важно, чтобы значение прямого тока равнялось 10А, а обратное напряжение было не менее 300 В. Отлично подходит под эти параметры диод типа Д245-Д247. Использовать в электролизере их можно без радиаторов. Длину электродов следует подбирать, исходя из размеров емкости. Главное, на что надо обратить внимание – они не должны соприкасаться с дном банки. Сама емкость закрывается полиэтиленовой крышкой, в которой делаются отверстия для удаления газа.

Так как с помощью одной крышки удержать электроды не получится, сверху ее следует усилить прокладкой. Она должна быть изготовлена из изолирующего материала. Отлично подойдет текстолит.

Размеры и крепление текстолитовой прокладки

В качестве материала для электродов используется нержавеющая сталь со следующими параметрами:

  • толщина – 0,8-3 мм;
  • ширина – 30-40 мм;
  • длина электрода – 150-160 мм (промежуток между ним и дном банки должен быть не менее 10 мм).

Крепятся электроды гайками и небольшими болтами так, чтобы между соседними было расстояние 40-50 мм. К выпрямителю с плюсовой стороны крепится анод. На этой пластине, в свою очередь, закрепляется мешочек из брезента. Он должен находится на уровне 6-7 мм ниже верха банки. Размер мешочка не играет особой роли. Однако для литровой банки чаще всего его делают длиной около 20 см и диаметром около 7 см.

Общая схема прибора

Во время подключения электролизера очень важно помнить, что электричество может быть опасно для жизни. А при его взаимодействии с водой риск повышается многократно. При подключении самодельного устройства необходимо использовать вилку, оснащенную устройством защитного отключения. Как минимум, рекомендуется применять УЗО с креплением под дин-рейку. Так как электролизер работает при высокой влажности, следует брать УЗО с показателем тока утечки в 10 мА.

После завершения электролиза диафрагму, отвечающую за разделение воды на живую и мертвую, необходимо сразу же вытащить. Если этого не сделать, то элементы могут снова смешаться. Поэтому отличным вариантом является изготовление электролизера с двумя отдельными емкостями.

Электролизер с раздельными емкостями

Электросхема данного прибора ничем не отличается от предыдущего варианта. Однако здесь требуется разделить католит и аналит. Для первого необходимо взять стеклянную банку высотой около 160 мм и диаметром 90 мм. Емкость с аналитом должна находится внутри этой банки. Для этого можно приобрести в хозяйственном магазине глиняный цилиндр размерами 60х60х130 мм. Данный материал будет выполнять роль диафрагмы. Контролировать потребление тока можно амперметром со шкалой до 1 А.

Электроды можно изготовить из обыкновенных медицинских шпателей. Достаточно 3-4 штук. Катод также можно сделать из двух шпателей и закрепить его в пластиковой крышке. Для этого в их самых узких частях просверливаются отверстия и через них проводятся П-образные перемычки из жести.

Шпатель для анода со стороны узкой части укорачивается до 125 мм и крепится также, как и катодный электрод. Для большей эффективности анод тоже можно выполнить из двух шпателей, расположенных на расстоянии 30 мм друг от друга. В крышке катода вырезается отверстие, и в него помещается крышка меньшего диаметра с закрепленным анодом.

При самом простом исполнении электролизера крышку с плюсовым электродом можно положить прямо на цилиндр из глины. Главное, обратить внимание на то, чтобы в собранном устройстве анод и катод не соприкасались. Кроме того, можно попробовать собрать устройство для живой и мертвой воды из двух отдельно стоящих емкостей.

Для работы устройства эти емкости соединяются токопроводящей перемычкой. Ее можно сделать из медицинской ваты, скрученной в жгут и обмотанной бинтом. Длина такой перемычки должна быть в пределах 10-15 см. Перед запуском электролизера ее необходимо тщательно смочить водой.

Для контроля процесса электролиза рекомендуется использовать последовательное подключение к прибору лампочки на 15-25 Вт. Во время завершения процесса ее свет будет тускнеть. А если произойдет короткое замыкание, то лампочка перегорит и сыграет роль предохранителя.

Правила эксплуатации

Разрешается использовать воду из-под крана, однако при хлорированном варианте стоит дать ей отстояться пару часов часов. Другой вариант — кипяченая вода. Плюсовой вид электрода опускаем в брезентовый наполнитель (или стакан из керамики), а другой электрод пойдет в банку. Теперь можно подключать к электросети: внутри брезента будет кислая вода с рН, равным 6 и меньшими показателями, а в стеклянной таре она станет щелочной с показателями рН, равными 10 (7).

Обычно после включения аппарата в сеть достаточно от 3 до 8 минут для приготовления воды необходимой концентрации. При этом она обычно нагревается до 70 градусов. После этого вилка отключается от питания, брезент быстро вытаскивается, и «мертвая» вода (+) выливается в другую емкость. Иначе растворы быстро перемешаются и их полезные свойства пропадут.

Иногда в «живой» жидкости могут плавать белые хлопья. Не стоит пугаться, это всего лишь соли жесткости, выделившиеся в активационном. Можно удалить их с помощью фильтра или просто отстоять и слить осадок.

Хранить оба раствора нужно в темной посуде, закрыв плотно крышкой:

  • у «живой» воды свойства сохранятся в течение месяца;
  • у «мертвой» — не более двух часов.

Лучше употребить оба полученных раствора сразу же, а не хранить их долгое время.

Если для электродов использовалась пищевая нержавейка, то процесс можно будет повторить 2-3 цикла. Однако необходимы некоторые меры по поддержанию работоспособности прибора.

  1. Катод и анод время от времени следует менять местами, чтобы происходило электродное самоочищение.
  2. Брезентовый мешок обрабатывают столовым уксусом, погружая его туда на полчаса. Подойдет небольшая посуда, в которой он может уместиться. После такой процедуры материал промывают под проточной водой.
  3. Хранить мешок и банку следует отдельно.

Кроме указанных правил, надо соблюдать следующие меры безопасности.

  1. Включать прибор только, когда он заправлен водой, а электроды расположены внутри банки.
  2. Не прикасаться к корпусу работающего прибора.
  3. Не допускать к нему детей и не оставлять устройство без присмотра.

При первой возможности лучше приобрести модель промышленного изготовления. Например, электроактиватор АП-1. Сделать это надо в целях безопасности собственного здоровья и своих близких.

Водяная горелка - миниатюрный автоген

Используется принцип получения водорода с помощью электролиза водного раствора щелочи. Благодаря малым наружным габаритам электролизера ему найдется место и на небольшом рабочем столе, а использование в качестве блока электропитания стандартного выпрямителя для подзарядки аккумуляторных батарей облегчает изготовление установки и делает работу с ней безопасной.

Относительно небольшая, но вполне достаточная для нужд моделиста производительность аппарата позволила предельно упростить конструкцию водяного затвора и гарантировать пожара - и взрывобезопасность.

Устройство электролизера

Между двумя платами, соединенными четырьмя шпильками, размещена батарея стальных пластин-электродов, разделенных резиновыми кольцами. Внутренняя полость батареи наполовину заполнена водным раствором КОН или NaOH.

Приложенное к пластинам постоянное напряжение вызывает электролиз воды и выделение газообразного водорода и кислорода.

Эта смесь отводится через надетую на штуцер полихлорвиниловую трубку в промежуточную емкость, а из нее в водяной затвор. Газ, прошедший через помещенную там смесь воды с ацетоном в соотношении 1 :1, имеет необходимый для горения состав и, отведенный другой трубкой в форсунку — иглу от медицинского шприца, сгорает у ее выходного отверстия с температурой около 1800° С.

Состав электролизера:

1 — изолирующая полихлорвиниловая трубка 10 мм, 2 — шпилька М8 (4 шт.), 3 — гайка М8 с шайбой (4 шт.), 4— левая плата, 5 — пробка-болт М10 с шайбой, б — плас-. тина, 7 — резиновое кольцо, 8 — штуцер, 9 — шайба, 10 —полихлорвиниловая трубка 5 мм, 11 — правая плата, 12 — короткий штуцер (3 шт.), 13 — промежуточная емкость, 14 — основание, 15 — клеммы, 16 — барботажная трубка, 17 — форсунка-игла, 18 — корпус водяного затвора.

Для плат электролизера я использовал толстое оргстекло. Этот материал легко обрабатывается, химически стоек к действию электролита и позволяет визуально контролировать его уровень, чтобы при необходимости добавлять через наливное отверстие дистиллированную воду.

Пластины можно изготовить из листового металла (нержавеющая сталь, никель, декапированное или трансформаторное железо) толщиной 0,6—0,8 мм. Для удобства сборки в пластинах выдавлены круглые углубления под резиновые кольца уплотнения, глубина их при толщине кольца 5—6 мм должна быть 2—3 мм.

Изоляции пластин, вырезаются из листовой маслобензостойкой или кислотоупорной резины. Сделать это вручную несложно, и все же идеальный для этого инструмент — “кругорез-универсал”.

Четыре стальные шпильки М8, соединяющие детали, изолированы кембриком диаметром 10 мм и пропущены в соответствующие отверстия диаметром 11 мм.

Количество пластин в батарее — 9. Оно определяется параметрами блока электропитания: его мощностью и максимальным напряжением — из расчета 2В на пластину.

Потребляемый ток зависит от количества задействованных пластин (чем их меньше, тем ток больше) и от концентрации раствора щелочи. В более концентрированном растворе ток больше, но лучше применять 4—8-процентный раствор — при электролизе он не так пенится.

Контактные клеммы припаиваются к первой и трем последним пластинам. Стандартное зарядное устройство для автомобильных аккумуляторов ВА-2, подключенное на 8 пластин, при напряжении 17 В и токе около 5А обеспечивает необходимую производительность горючей смеси для форсунки — иглы с внутренним диаметром 0,6 мм.

Оптимальное соотношение диаметра иглы форсунки и производительности электролизера устанавливается опытным путем — так, чтобы зона воспламенения смеси располагалась вне иглы. Если производительность мала или диаметр отверстия слишком велик, горение начнется в самой игле, которая от этого быстро разогреется и оплавится.

Надежным заслоном от распространения пламени по подводящей трубке внутрь электролизера является простейший водяной затвор, который сделан из двух порожних баллончиков для заправки газовых зажигалок. Достоинства их те же, что и у материала плат: легкость механической обработки, химическая стойкость и полупрозрачность, позволяющая контролировать уровень жидкости в водяном затворе.

Промежуточная емкость исключает возможность смешивания электролита и состава водяного затвора в режимах интенсивной работы или под действием разряжения, возникающего при выключении электропитания. А чтобы этого избежать наверняка, по окончании работы следует сразу же отсоединять трубку от электролизера.

Штуцеры емкостей сделаны из медных трубок диаметром 4 и 6 мм, устанавливаются в верхней стенке баллончиков на резьбе. Через них же осуществляется заливка состава водяного затвора и слив конденсата из разделительной емкости. Отличная воронка для этого получится из еще одного пустого баллончика, разрезанного пополам и с установленной на месте клапана тонкой трубкой.

Соедините короткой полихлорвиниловой трубкой диаметром 5 мм электролизер с промежуточной емкостью, последнюю — с водяным затвором, а его выходной штуцер более длинной трубкой — с форсункой-иглой.

Включите выпрямитель, подрегулируйте напряжением или количеством подключаемых пластин номинальный ток и подожгите выходящий из форсунки газ.

Если вам необходима большая производительность — увеличьте количество пластин и примените более мощный блок питания — с ЛАТРом и простейшим выпрямителем.

Температура пламени также поддается некоторой корректировке составом водяного затвора. Когда в нем только вода, в смеси содержится много кислорода, что в некоторых случаях нежелательно.

О том, как сделать метиловый спирт в домашних условиях, мы описали в этой статье.

Залив в водяной затвор метиловый спирт, смесь можно обогатить и поднять температуру до 2600°С.

Для снижения температуры пламени водяной затвор заполняют смесью ацетона и воды в соотношении 1:1. Однако в последних случаях следует не забывать пополнять и содержимое водяного затвора.

практические советы по изготовлению и монтажу Печь на водороде своими руками чертежи

С экранов телевизоров нам заявляют, что количество нефти стремительно уменьшается, и вскоре бензиновые машины отойдут в далёкое прошлое. Вот только это не совсем верно.

Действительно, количество разведанных запасов нефти не очень велико. В зависимости от степени потребления их может хватить на период от 50 до 200 лет. Но в этой статистике не учитываются до сих пор неразведанные места нефтедобычи.

В действительности нефти на нашей планете более чем достаточно. Другой вопрос, что сложность её добычи постоянно возрастает, а значит, растёт и цена. К тому же нельзя списывать со счетов экологический фактор. Выхлопные газы сильно загрязняют среду и с этим нужно что-то делать.

Современная наука создала множество альтернативных источников энергии вплоть до двигателя ядерного распада в ваших машинах. Но большинство из этих технологий пока что представляют собой концепты без возможности реального применения. По крайней мере, так было до недавнего времени.

С каждым годом машиностроительные компании выпускают всё больше машин, работающих на альтернативных источниках питания. Одним из самых эффективных решений в данном контексте является водородный двигатель от бренда «Тойота». Он позволяет полностью забыть про бензин, делая автомобиль экологичным и дешёвым транспортом.

Водородные двигатели

Типы водородных двигателей и их описание

Наука непрерывно развивается. Каждый день придумываются новые концепты. Но только лучшие из них воплощаются в жизнь. Сейчас существует всего два типа водородных двигателей, которые могут быть рентабельными и производительными.

Первый тип водородного двигателя работает на топливных элементах. К сожалению, водородные двигатели данного типа до сих пор имеют высокую стоимость. Дело в том, что в конструкции содержаться дорогие материалы вроде платины.

Ко второму типу относятся водородные двигатели внутреннего сгорания. Принцип работы таких устройств сильно напоминает пропановые модели. Именно поэтому их часто перенастраивают для работы под водород. К сожалению, КПД подобных устройств на порядок ниже тех, что функционируют на топливных элементах.

На данный момент тяжело сказать, какая из двух технологий по созданию водородных двигателей победит. У каждой есть свои плюсы и минусы. В любом случае работы в данном направлении не прекращаются. Поэтому, вполне возможно, что к 2030 году машину с водородным двигателем можно будет купить в любом автосалоне.

Принцип работы

Водородный двигатель работает на основе принципа электролиза. Данный процесс происходит в воде под воздействием специального катализатора. В результате выделяется гидроген. Его химическая формула следующая — ННО. Газ не обладает взрывоопасными качествами.

Важно! Внутри специальных ёмкостей газ смешивается с топливно-воздушной смесью.

В состав генератора входит электролизер и резервуар. За процесс генерации газа отвечает модулятор тока. Для обеспечения наилучших результатов в инжекторных водородных двигателях устанавливается оптимизатор. Это устройство отвечает за регулирование соотношения топливно-воздушной смеси и газа Брауна.

Характеристики катализаторов

Катализаторы, используемые для создания нужной реакции в водородном двигателе, могут быть трёх видов:

  1. Цилиндрические банки. Это самая простая конструкция, работающая на довольно примитивной системе управления. Производительность водородного двигателя, работающего с данным катализатором, не превышает 0,7 литра газа в минуту. Такие системы могут использоваться на машинах с водородным двигателем объёмом до полутора литра. Увеличение числа банок позволяет превысить данный лимит.
  2. Раздельные ячейки. Считается, что именно такой тип катализатора является наиболее эффективным. Производительность системы составляет более двух литров газа в минуту, КПД — максимальный.
  3. Открытые пластины или сухой катализатор. Данная система рассчитана на длительный срок работы. Производительность колеблется в диапазоне от одного до двух литров газа в минуту. Открытое расположение обеспечивает максимально эффективное охлаждение.

Эффективность водородных двигателей с каждым годом растёт. Сейчас начинают вводиться в эксплуатации гибридные устройства, функционирующие на водороде и бензине. В свою очередь, конструкторы не прекращают искать наиболее эффективной модели катализатора, обеспечивающей ещё большую производительность.

Водородный двигатель своими руками

Генератор

Чтобы создать эффективный водородный двигатель для автомобиля своими руками, нужно начать с генератора. Самый простой самодельный генератор — это герметичная ёмкость с жидкостью, в которую погружаются электроды. Для такого устройства достаточно источника питания в 12 В.

Штуцер устанавливается на крышке конструкции. Он отводит смесь водорода с кислородом. Собственно, это и есть основа генератора для водородного двигателя, которая подключается к ДВС.

Чтобы создать полноценную систему также понадобится дополнительный накопитель и аккумулятор. В качестве корпуса лучше всего использовать водопроводный фильтр или же можно купить специальную установку. В последней применяются цилиндрические электроды повышенной производительности.

Как видите, выделить нужный газ для реакции не так-то уж и сложно. Намного сложнее произвести его в нужном для водородного двигателя количестве. Чтоб повысить эффективность необходимо использовать электроды из меди. В крайнем случае подойдёт и нержавейка.

В ходе реакции ток должен подаваться с разной силой. Поэтому без электронного блока не обойтись. К тому же в резервуаре всегда должно быть определённое количество воды, чтобы реакция проходила в нормальных условиях. Система автоматической подпитки в водородном двигателе решает эту проблему. Интенсивность электролиза обеспечивает достаточное количество соли.

Важно! Если вода дистиллированная, электролиза не будет вовсе.

Чтобы сделать воду для водородного двигателя необходимо взять 10 литров жидкости и добавить столовую ложку гидроксида.

Устройство водородного двигателя

В первую очередь нужно позаботиться о дополнительных резервуарах и трубопроводе. Водородный двигатель нуждается в датчике уровня воды, который устанавливается в середине крышки. Это предотвратит ложное срабатывание при движении вверх-вниз. Именно он будет давать команду системе автоматической подпитки, когда это понадобится.

Особую роль играет датчик давления. Он включается на показателе в 40 psi. Как только внутреннее давление достигнет показателя в 45 psi, подкачка отключается. При превышении 50 psi сработает предохранитель.

Предохранитель водородного двигателя должен состоять из двух частей: вентиля аварийного сброса и разрывного диска. Разрывной диск активируется, когда давление достигает 60 psi, не нанося никакого вреда системе.

Для отвода тепла нужно использовать самую холодную свечу. Не подходят свечи с платиновыми наконечниками. Платина — отличный катализатор для реакции водорода и кислорода.

Важно! Уделите особое внимание созданию вентиляции картера водородного двигателя.

Электрическая часть

Важную роль в электрической схеме водородного двигателя играет таймер 555. Он выполняет роль импульсного генератора. Мало того, с его помощью можно регулировать частоту и ширину импульса.

Важно! Таймер имеет три частотных диапазона. Сопротивление резисторов в пределах 100 Ом. Подключение происходит параллельно.

В плате водородного двигателя должно быть два импульсных таймера 555. При этом первый должен иметь конденсаторы большей ёмкости. Выход с ноги 3 поступает на второй генератор. Он его собственно и включает.

Третий выход второго таймера импульсного водородного генератора подключается к резисторам на 220 и 820 Ом. Транзистор усиливает ток до нужной величины. За его защиту отвечает диод 1N4007. Это обеспечивает нормальную работу всей системы.

Итоги

Сейчас водородный двигатель уже не плод фантазии учёных, а вполне реальная разработка, которую можно сделать самостоятельно. Конечно, по характеристикам подобный агрегат будет уступать заводской модели. Но экономия для ДВС всё равно будет заметной.

Водородные двигатели не просто помогают сократить потребление бензина, но и являются полностью безопасными для окружающей среды. Именно поэтому уже в первом квартале продажи водородного автомобиля марки «Тойота» побили все рекорды в Японии.

Использование водорода в качестве энергоносителя для обогрева дома – идея весьма заманчивая, ведь его теплотворная способность (33.2 кВт / м3) превышает более чем в 3 раза показатель природного газа (9.3 кВт / м3). Теоретически, чтобы извлечь горючий газ из воды с последующим сжиганием его в котле, можно использовать водородный генератор для отопления. О том, что из этого может получиться и как сделать такое устройство своими руками, будет рассказано в данной статье.

Принцип работы генератора

Как энергоноситель водород действительно не имеет себе равных, а запасы его практически неисчерпаемы. Как мы уже сказали, при сжигании он выделяет огромное количество тепловой энергии, несравнимо большее, нежели любое углеводородное топливо. Вместо вредных соединений, выбрасываемых в атмосферу при использовании природного газа, при горении водорода образуется обычная вода в виде пара. Одна беда: данный химический элемент не встречается в природе в свободном виде, только в соединении с другими веществами.

Одно из таких соединений – обычная вода, представляющая собой полностью окисленный водород. Над ее расщеплением на составные элементы работали многие ученые в течение долгих лет. Нельзя сказать, что безрезультатно, ведь техническое решение по разделению воды все же было найдено. Его суть – в химической реакции электролиза, в результате которой происходит расщепление воды на кислород и водород, полученную смесь назвали гремучим газом или газом Брауна. Ниже показана схема водородного генератора (электролизера), работающего на электричестве:

Электролизеры производятся серийно и предназначены для газопламенных (сварочных) работ. Ток определенной силы и частоты подается на группы металлических пластин, погруженных в воду. В результате протекающей реакции электролиза выделяются кислород и водород вперемешку с водяным паром. Для его отделения газы пропускаются через сепаратор, после чего подаются на горелку. Дабы избежать обратного удара и взрыва, на подаче устанавливается клапан, пропускающий горючее только в одну сторону.

Для контроля за уровнем воды и своевременной подпитки конструкцией предусмотрен специальный датчик, по сигналу которого производится ее впрыск в рабочее пространство электролизера. За превышением давления внутри сосуда следит аварийный выключатель и сбросной клапан. Обслуживание водородного генератора заключается в периодическом добавлении воды, и на этом все.

Водородное отопление: миф или реальность?

Генератор для сварочных работ – это на данный момент единственное практическое применение электролитическому расщеплению воды. Использовать его для отопления дома нецелесообразно и вот почему. Затраты энергоносителей при газопламенных работах не так важны, главное, что сварщику не нужно таскать тяжеленные баллоны и возиться со шлангами. Другое дело – отопление жилища, где каждая копейка на счету. И тут водород проигрывает всем существующим ныне видам топлива.

Важно. Затраты электроэнергии на выделение горючего из воды методом электролиза будут гораздо выше, нежели гремучий газ сможет выделить при сжигании.

Серийные сварочные генераторы стоят немалых денег, поскольку в них используются катализаторы процесса электролиза, в состав которых входит платина. Можно сделать водородный генератор своими руками, но его эффективность будет еще ниже, чем у заводского. Получить горючий газ вам точно удастся, но вряд ли его хватит на обогрев хотя бы одной большой комнаты, не то что целого дома. А если и хватит, то придется оплачивать баснословные счета за электричество.

Чем тратить время и усилия на получение бесплатного топлива, которого не существует априори, проще смастерить своими руками простой электродный котел. Можете быть уверены, что так вы израсходуете гораздо меньше энергии с большей пользой. Впрочем, домашние мастера – энтузиасты всегда могут попробовать свои силы и собрать дома электролизер, с целью провести эксперименты и убедиться во всем самолично. Один из подобных экспериментов показан на видео:

Как изготовить генератор

Масса интернет-ресурсов публикуют самые разные схемы и чертежи генератора для получения водорода, но все они действуют по одному принципу. Мы предложим вашему вниманию чертеж простого устройства, взятый из научно-популярной литературы:

Здесь электролизер представляет собой группу металлических пластин, стянутых между собой болтами. Между ними установлены изоляционные прокладки, крайние толстые обкладки тоже изготовлены из диэлектрика. От штуцера, вмонтированного в одну из обкладок, идет трубка для подачи газа в сосуд с водой, а из него – во второй. Задача емкостей – отделять паровую составляющую и накапливать смесь водорода с кислородом, чтобы подавать его под давлением.

Совет. Электролитические пластины для генератора надо делать из нержавеющей стали, легированной титаном. Он послужит дополнительным катализатором реакции расщепления.

Пластины, что служат электродами, могут быть произвольного размера. Но надо понимать, что производительность аппарата зависит от их площади поверхности. Чем большее число электродов удастся задействовать в процессе, тем лучше. Но при этом и потребляемый ток будет выше, это следует учитывать. К концам пластин припаиваются провода, ведущие к источнику электричества. Здесь тоже есть поле для экспериментов: можно подавать на электролизер разное напряжение с помощью регулируемого блока питания.

В качестве электролизера можно применить пластиковый контейнер от водяного фильтра, поместив в него электроды из нержавеющих трубок. Изделие удобно тем, что его легко герметизировать от окружающей среды, выводя трубку и провода через отверстия в крышке. Другое дело, что этот самодельный водородный генератор обладает невысокой производительностью из-за малой площади электродов.

Заключение

На данный момент не существует надежной и эффективной технологии, позволяющей реализовать водородное отопление частного дома. Те генераторы, что имеются в продаже, могут успешно применяться для обработки металлов, но не для производства горючего для котла. Попытки организовать подобный обогрев приведут к перерасходу электроэнергии, не считая затрат на оборудование.

Раньше загородные дома можно было отапливать только одним способом – растапливали печь дровами или углем. Сегодня же для отопления частного дома используют разнообразное топливо: дизель, мазут, природный газ, электричество. Однако с ростом цен на топливо многие владельцы домов стараются найти более дешевый способ отопления. Одним из них является обычная вода, которую использует водородный генератор для образования такого топлива, как водород. Водород является неиссякаемым источником энергии. Его можно применять не только для обогрева помещений, но и для автомобиля.

Генератор водорода: устройство и его принцип работы

Использовать водород для обогрева жилых домов очень выгодно, так как он обладает высокой теплотворной способностью и при этом не происходит выделения вредных веществ. Однако в чистом виде добыча водорода невозможна, большое содержание его находится в реках, морях и океанах. Организм человека даже состоит из 63% водорода.

Чистый водород можно получать из многих различных химических соединений, например, водорода и кислорода. Самый известный способ получения водорода – это электролиз воды.

Чтобы получить чистый водород необходимо воду расщепить на два атома (НН) водорода и атом кислорода (О). Это и есть принцип работы водяного генератора: получение водорода с помощью электролиза. Газ, который выделяется при этом, назвали в честь великого физика Брауна и он имеет формулу ННО. Такой газ при сгорании не образует вредных веществ и является экологически чистым продуктом. Однако смесь водорода с кислородом образует в итоге горючий газ, который является взрывоопасным. Поэтому используя в домашних условиях электролизер, нужно соблюдать дополнительные меры безопасности.


Водяной двигатель имеет такое устройство:

  • Генератор водородного типа, где и происходит электролиз;
  • Горелка, она устанавливается в самой топке;
  • Котел, он выполняет функцию теплообменника.

На производство такого газа, как браун, используется в четыре раза меньше энергии, чем выделяется при его сгорании. Электричество при этом расходуется очень экономно, а топливо, которое ему необходимо – это обычная вода.

Водородный генератор: его достоинства и недостатки

Сегодня электролизёр является таким же привычным устройством, как например, плазменный резак или ацетиленовый электрогенератор. Такая электролизная установка, работающая на воде (печка), стала достаточно популярной, ее применяют для обогрева частных домов, а так же устанавливают на мотоцикл или авто для экономии топлива.

Водородный генератор является экологически чистым топливом, единственным отходом, который он вырабатывает, есть вода. Она выделяется в газообразном состоянии и известна нам, как водяной пар. А он, в свою очередь, никакого негативного влияния на окружающую среду не оказывает.

Такое устройство обладает и другими положительными достоинствами, но так же и недостатками. Самый важный недостаток – это его взрывоопасность. Однако соблюдая все предосторожности и правила безопасности, можно избежать негативных последствий.

Водородный реактор имеет свои преимущества:

  • Работает на воде;
  • Экономит электричество;
  • Является экологически чистым;
  • Высокий КПД;
  • Простота обслуживания.

Такой прибор HHO можно приобрести в готовом виде в специализированном магазине, стоит он будет, конечно совсем не дешево. Однако можно сделать его и своими руками из доступных деталей, сэкономив при этом приличную сумму. Однако ему нужна защита от воды и отдельный домик для хранения.

Самодельный водородный генератор: пошаговая инструкция

Изготовление водородного генератора можно осуществит в домашних условиях, но для этого будут нужны чертежи и пошаговая инструкция всего процесса. Схема электролизера очень проста (ее можно смотреть в интернете), поэтому каких-либо специфических материалов практически не понадобится.

Для создания самодельного генератора водорода нам понадобятся некоторые инструменты и материалы: пластиковый контейнер или полиэтиленовая канистра с крышкой, прозрачная трубка длиной 1м, с диаметром 8 мм, болты, гайки, силиконовый герметик, лист нержавейки, 3 штуцера, обратный клапан, фильтр, ножовка по металлу, гаечные ключи и нож.

Собрав все это, можно приступать к его изготовлению. Сборка осуществляется по чертежам, которые можно найти в интернете или же заказать у специалиста.

Инструкция изготовления:

  • Из листа нержавейки вырезаем 16 одинаковых пластин.
  • Сверлим отверстие в одном из углов. Угол должен быть одинаковым у всех 16.
  • Противоположный угол обязательно спиливаем.
  • Устанавливаем пластины поочередно на приготовленные болты, изолируя их шайбами и полиэтиленовыми трубками. Они не должны контактировать между собой.
  • Стягиваем всю конструкцию гайками, получается батарея.
  • Крепим данную конструкцию в пластиковую емкость, отверстия смазать герметиком.
  • Просверливаем отверстия в крышке, обрабатываем их так же силиконом, затем вставляем штуцера.


Самодельный кислородный гидролизер готов. Теперь его только нужно проверить на работоспособность. Для этого нужно заполнить емкость водой до болтов крепления и закрыть ее крышкой. Одеваем на один из трех штуцеров шланг из полиэтилена, а второй его коней опускаем в отдельную емкость, заполненную так же водой. К болтам нужно подключить электричество, если на поверхности появились пузырьки, значит, генератор работает и выделяет водород. После такого подключения и проверки, воду сливаем, а затем заливаем в емкость готовый щелочной электролит, чтобы получить больше выделяемого газа.

Электролизер для автомобиля: виды катализаторов

Водородный генератор, при установке, способен снизить расход топлива у легковых или грузовых машин, мотоциклов, а так же сократит выброс в атмосферу вредных веществ. На сегодняшний день, такой генератор для автомобиля приобретает популярность. Процесс электролиза в авто происходит благодаря применению специального катализатора. В конечном итоге получается оксиводород (ННО), который смешиваясь с топливом, что и способствует его полному сгоранию.

Благодаря такой установке можно сэкономить горючее на 50%. А так же, установив данную конструкцию в свой автомобиль, вы не только уменьшите токсичные выхлопы, но и: увеличите эксплуатационный срок двигателя, снизите температуру самого мотора и при этом повысите мощность всего силового агрегата.

Все процессы, которые происходят в водородном генераторе, происходят автоматически по специальной программе. Эта программа вшита в компьютер, который и управляет всем автомобилем. Машина без него попросту не будет работать.

Существует несколько видов катализаторов:

  • Цилиндрические;
  • С открытыми пластинами или их еще называют сухими;
  • С раздельными ячейками.

Самостоятельно водородный генератор можно изготовить, однако специалисты делать этого не рекомендуют, так как это устройство очень сложное по конструкции и при этом еще не безопасно. Если вы все же решили сделать его сами, тогда лучше всего подойдет для этих целей аккумулятор, вышедший из строя.

Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.

Что такое электролизер, его характеристики и применение

Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.

Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м 3 /ч).

Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:


Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.

  1. Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
  2. Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
  3. Концентрация электролита и его тепловой баланс.
  4. Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
  5. Применение катализаторов процесса и т.д.

Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).


Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.

Устройство и подробный принцип работы

Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.

Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.

Рисунок 4. Конструкция простого электролизера

В результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.

Виды электролизеров

Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.

Сухие

Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.

Проточные

С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».


Рис 5. Конструкция проточного электролизера

Принцип работы устройства следующий:

  • входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
  • в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
  • электролит возвращается в гидролизную ванну через трубу «Е».

Мембранные

Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.

Рис 6. Электролизер мембранного типа

Основная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.

Диафрагменные

В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.


Пояснение:

  1. Выход для кислорода.
  2. U-образная колба.
  3. Выход для водорода.
  4. Анод.
  5. Катод.
  6. Диафрагма.

Щелочные

Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.

На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO 3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:

  1. Можно использовать железные электроды.
  2. Не выделяются вредные вещества.

Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.

Электролизер для получения водорода: чертежи, схема

Рассмотрим, как можно сделать мощную газовую горелку, работающую от смеси водорода с кислородом. Схему такого устройства можно посмотреть на рисунке 8.


Рис. 8. Устройство водородной горелки

Пояснение:

  1. Сопло горелки.
  2. Резиновые трубки.
  3. Второй водяной затвор.
  4. Первый водяной затвор.
  5. Анод.
  6. Катод.
  7. Электроды.
  8. Ванна электролизера.

На рисунке 9 представлена принципиальная схема блока питания для электролизера нашей горелки.


Рис. 9. Блок питания электролизной горелки

На мощный выпрямитель нам понадобятся следующие детали:

  • Транзисторы: VT1 – МП26Б; VT2 – П308.
  • Тиристоры: VS1 – КУ202Н.
  • Диоды: VD1-VD4 – Д232; VD5 – Д226Б; VD6, VD7 – Д814Б.
  • Конденсаторы: 0,5 мкФ.
  • Переменные резисторы: R3 -22 кОм.
  • Резисторы: R1 – 30 кОм; R2 – 15 кОм; R4 – 800 Ом; R5 – 2,7 кОм; R6 – 3 кОм; R7 – 10 кОм.
  • PA1 – амперметр со шкалой измерения не менее 20 А.

Краткая инструкция по деталям к электролизеру.

Ванну можно сделать из старого аккумулятора. Пластины следует нарезать 150х150 мм из кровельного железа (толщина листа 0,5 мм). Для работы с вышеописанным блоком питания потребуется собрать электролизер на 81 ячейку. Чертеж, по которому выполняется монтаж, приведен на рисунке 10.

Рис. 10. Чертеж электролизера для водородной горелки

Заметим, что обслуживание такого устройства и управление им не вызывает трудностей.

Электролизер для автомобиля своими руками

В интернете можно найти много схем HHO систем, которые, если верить авторам, позволяют экономить от 30% до 50% топлива. Такие заявления слишком оптимистичны и, как правило, не подтверждаются никакими доказательствами. Упрощенная схема такой системы продемонстрирована на 11 рисунке.


Упрощенная схема электролизера для автомобиля

По идее, такое устройство должно снизить расход топлива за счет его полного выгорания. Для этого в воздушный фильтр топливной системы подается смесь Брауна. Это водород с кислородом, полученные из электролизера, запитанного от внутренней сети автомобиля, что повышает расход топлива. Замкнутый круг.

Безусловно, может быть задействована схема шим регулятора силы тока, использован более эффективный импульсный блок питания или другие хитрости, позволяющие снизить расход энергии. Иногда в интернете попадаются предложения приобрести низкоамперный БП для электролизера, что вообще является нонсенсом, поскольку производительность процесса напрямую зависит от силы тока.

Это как система Кузнецова, активатор воды которой утерян, а патент отсутствует и т.д. В приведенных видео, где рассказывают о неоспоримых преимуществах таких систем, практически нет аргументированных доводов. Это не значит, что идея не имеет прав на существование, но заявленная экономия «слегка» преувеличена.

Электролизер своими руками для отопления дома

Делать самодельный электролизер для отопления дома на данный момент не имеет смысла, поскольку стоимость водорода, полученного путем электролиза значительно дороже природного газа или других теплоносителей.

Также следует учитывать, что температуру горения водорода не выдержит никакой металл. Правда имеется решение, которое запатентовал Стен Мартин, позволяющее обойти эту проблему. Необходимо обратить внимание на ключевой момент, позволяющий отличить достойную идею от очевидного бреда. Разница между ними заключается в том, что на первый выдают патент, а второй находит своих сторонников в интернете.

На этом можно было бы и закончить статью о бытовых и промышленных электролизерах, но имеет смысл сделать небольшой обзор компаний, производящих эти устройства.

Обзор производителей электролизеров

Перечислим производителей, выпускающих топливные элементы на базе электролизеров, некоторые компании также выпускают и бытовые устройства: NEL Hydrogen (Норвегия, на рынке с 1927 года), Hydrogenics (Бельгия), Teledyne Inc (США), Уралхиммаш (Россия), РусАл (Россия, существенно усовершенствовали технологию Содерберга), РутТех (Россия).

Устройство, которое позволяет получать водород из воды – это водородный генератор. Зачастую их применяют в автомобилях. Применение подобного устройства в авто оправдано. Выработанный водород поступает во впускной коллектор движка. Это позволяет сэкономить топливо и иногда увеличить его мощность. В США такие генераторы выпускают на заводах. Стоят они не дешево - от 300 до 800 долларов. В нашей стране предпочтительно сделать генератор самостоятельно.

Принцип работы водородного генератора

Молекула воды - это соединение из водорода и кислорода. Атомы имеют возможность создавать ионы. Если вы наблюдали за экспериментами, в которых используется катушка Теслы, то должны знать, что атомы ионизуются под воздействием электрического поля. При этом водород будет образовывать положительные, а кислород отрицательные ионы. В водородных генераторах электрическое поле используется для отсоединения молекул воды друг от друга.

Итак, расположив два электрода в воде нам нужно создать электрическое поле среди них. Для этого их необходимо подключить к клеммам аккумулятора или любого другого источника питания. Анод является положительным, а катод отрицательным электродами. Ионы, которые образовались в воде, будут подтянуты к электроду, чья полярность противоположна. Когда ионы соприкасаются с электродами, то их заряд нейтрализуется из-за добавления или удаления электронов. Когда появившийся между электродами газ выходит на поверхность, то его нужно обязательно послать в двигатель.

Водородные ячейки для авто включают в себя сосуд с водой, который располагается под капотом. Обычная водопроводная вода наливается в сосуд и туда добавляют чайную ложку катализатора и соды. Внутрь погружены пластины, подключенные к аккумулятору. При включении в авто зажигания, конструкция (водородный генератор) производит выработку газа.

Какие электроды лучше использовать?

Первые в мире электроды были изготовлены из меди, но выяснилось, что они далеки от идеала. К тому же медь дает сильную реакцию при контакте с водой. Происходит выделение большого числа загрязнителей, поэтому использование меди далеко не лучший вариант. Мы рекомендуем вам использовать электроды, которые выполнены из нержавеющей стали. Для сокращения вероятности коррозии нужно выбирать нержавеющую сталь высокого качества . Толщина листов должна быть около 2 мм, для уменьшения сопротивления.

Описание процесса сборки генератора водорода

Разобравшись в тонкостях действия водородного генератора, перейдем к его созданию. Для того чтобы собрать водородный генератор своими руками нам будет нужно:

  • канистра из полиэтилена;
  • провода для соединения;
  • резина из силикона;
  • специальный герметик;
  • шланги с хомутами.

Подобрав все необходимое, приступим к изготовлению генератора своими руками.

Рекомендуем также

Водород из воды своими руками. Использование водородного генератора для отопления

В современном обществе бытует мнение, что наиболее доступным по цене топливом является природный газ. На самом деле, ему существует альтернатива - водород. Его можно получить при расщеплении воды. Причем этот вид топлива будет бесплатным, если не учитывать тот факт, что придется собрать водородный генератор, компоненты которого нужно покупать.

Теоретическая основа

Водород является очень легким газообразным веществом. У него высокая химическая активность. Окисляясь, он дает большое количество тепловой энергии и при этом образует воду.

Водород обладает следующими свойствами:

Стоит отметить, что hydrogen и oxygen соединяются очень легко, а вот разделить их непросто. Для этого придется использовать электричество для запуска непростой химической реакции.

Простейший газогенератор для добычи водорода представляет собой емкость с жидкостью, внутри которой располагаются две пластины с подключением к электрической сети. Поскольку вода хорошо проводит ток, электроды вступают в контакт с малым сопротивлением. При прохождении электричества через пластины возникает химическая реакция, сопровождающаяся появлением водорода.

Водород. Учебный фильм для школьников по химии

Лучше всего собирать устройство для получения , которую называют классической. Здесь электролизер состоит из нескольких ячеек. В каждой из них находятся контактные пластины. Производительность установки определяется площадью поверхности электродов.

Ячейки следует поместить в хорошо изолированный корпус с заранее подключенными патрубками для водоснабжения и отведения водорода. Кроме того, на емкость должен иметься разъем для подключения электрической энергии.


Также нужно будет установить водяной затвор и обратный клапан. Они предотвратят поступление газа Брауна назад в резервуар. По такой съеме можно собрать гидролизер как для отопления дома, так и для автомобиля.

Собрать водородный электрогенератор для дома можно, но рентабельной затею назвать сложно. Дело в том, что для получения достаточных объемов газа придется использовать мощную электрическую установку. Она будет потреблять много дорогой энергии. Однако это не останавливает энтузиастов.

Чтобы собрать электролизер для получения водорода своими руками в домашних условиях, понадобится специализированный инструмент. Например, не обойтись без осциллографа и частотомера.

Вооружившись чертежами, первым делом нужно собрать ячейку гидролизера. Ее ширина и длина должны быть чуть меньше габаритов корпуса. Высота - не более 2/3 основной емкости.

Ячейку обычно делают из толстого текстолита с помощью эпоксидного клея. При сборке нижняя часть корпуса остается открытой.

На верхней стороне емкости насверливаются отверстия. Через них наружу выводятся хвостовики электродов. Также понадобится 2 дополнительных отверстия. Первое совсем маленькое для датчика уровня жидкости. Второе диаметром в 15 мм для штуцера. Последний следует закрепить механически. Все отверстия для пластин после установки последних заливаются эпоксидной смолой. Модуль размещается внутри корпуса и основательно герметизируется все той же эпоксидной смолой.

Перед установкой ячеек корпус водогенератора следует подготовить:

После загрузки топливных ячеек, подключения питания, соединения штуцера с приемником и установки крышки на корпус, сборку генератора можно считать завершенной. Остается заполнить емкость жидкостью и подключить дополнительные модули.

Собрать генератор кислорода своими руками - половина дела. Нужно подключить к нему дополнительные устройства, без которых он работать не будет. Например, датчик уровня жидкости нужно соединить с помпой для подачи воды через контроллер. Последний отслеживает сигналы датчика и при необходимости запускает подачу жидкости внутрь топливных ячеек.

Не обойтись и без устройства, позволяющего регулировать частоту тока на клеммах ННО генератора. Кроме того, вся электрическая часть должна иметь защиту от перегрузки. Для этого обычно используется стабилизатор напряжения.

Как сделать генератор водорода своими руками/How to make a DIY hydrogen generator

Что касается коллектора оксиводорода, то его простейший вариант представляет собой трубку, на которой закреплены: запорная арматура, обратный клапан и манометр.

По идее газ из коллектора можно сразу закачивать в печь системы отопления. На практике это невозможно, так как водород выделяет слишком много тепла. Поэтому перед использованием его смешивают с другим топливом.

Своими руками собрать такое устройство не так уж и сложно. Помогут в этом чертежи с пошаговыми инструкциями. Также нужно будет приготовить необходимые материалы: контейнер из пластика или корпус от старого аккумулятора, трубку длиной не менее метра, крепежные болты и гайки, герметик, лист нержавеющей стали, несколько штуцеров, фильтры и обратный клапан.

Процесс изготовления водородного генератора для автомобиля выглядит следующим образом:

Простейший гидролизатор для авто готов. Но перед установкой в транспортное средство нужно его проверить. Для этого устройство заполняется водой до уровня крепежных болтов на пластинах. К штуцеру подключается полиэтиленовый шланг. Его свободный конец опускается в заранее подготовленную емкость с жидкостью.

После подачи энергии на электроды поверхность воды во втором контейнере должна покрыться пузырьками газа. Если это произошло, то генератор готов к эксплуатации. Остается жидкость в нем заменить на щелочной электролит для повышения объемов производимого газа.

Следует понимать,что самодельный генератор водорода не является заменой традиционному топливу. Его устанавливают на автомобили в основном для экономии бензина. Она может достигать 50%. Кроме того, при использовании HHO снижаются вредные выхлопы, повышаются эксплуатационные сроки, уменьшается температура силового агрегата. И все это при ощутимом повышении мощности мотора.

Всеми любимая нержавейка - доступное, но недолговечное решение. Топливные ячейки на них довольно быстро выйдут из строя.

Также при сборке гидролизатора нужно соблюдать монтажные размеры. Чтобы их получить, нужно произвести сложные расчеты с учетом качества воды, необходимой мощности на выходе и т. д.

При изготовлении устройства значение имеет даже сечение проводов, по которым на электроды подается ток. Речь идет не о производительности генератора, а о безопасности его эксплуатации, но и этот важный нюанс нужно учитывать.

Главная проблема таких приборов - большие затраты электричества для получения оксиводорода. Они превышают энергию, которую можно получить от сжигания такого топлива.

Из-за низкого КПД цена водородной установки для дома делает производство этого газа и его последующее использование для отопления невыгодным. Чем впустую расходовать электричество, проще установить любой электрокотел. Он будет эффективнее.


Что касается автомобильного транспорта, то здесь картина не сильно отличается. Да, можно сделать гидролизер для экономии топлива, но при этом снижается безопасность и надежность.

Единственное, где водород можно эффективно применять как топливо, - газосварка. Аппараты на hydrogen весят меньше, они компактнее, чем кислородные баллоны, но намного эффективнее. К тому же стоимость получения смеси здесь не играет никакой роли.

Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.

Что такое электролизер, его характеристики и применение

Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.

Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м 3 /ч).

Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:


Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.

  1. Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
  2. Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
  3. Концентрация электролита и его тепловой баланс.
  4. Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
  5. Применение катализаторов процесса и т.д.

Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).


Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.

Устройство и подробный принцип работы

Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.

Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.

Рисунок 4. Конструкция простого электролизера

В результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.

Виды электролизеров

Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.

Сухие

Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.

Проточные

С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».


Рис 5. Конструкция проточного электролизера

Принцип работы устройства следующий:

  • входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
  • в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
  • электролит возвращается в гидролизную ванну через трубу «Е».

Мембранные

Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.

Рис 6. Электролизер мембранного типа

Основная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.

Диафрагменные

В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.


Пояснение:

  1. Выход для кислорода.
  2. U-образная колба.
  3. Выход для водорода.
  4. Анод.
  5. Катод.
  6. Диафрагма.

Щелочные

Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.

На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO 3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:

  1. Можно использовать железные электроды.
  2. Не выделяются вредные вещества.

Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.

Электролизер для получения водорода: чертежи, схема

Рассмотрим, как можно сделать мощную газовую горелку, работающую от смеси водорода с кислородом. Схему такого устройства можно посмотреть на рисунке 8.


Рис. 8. Устройство водородной горелки

Пояснение:

  1. Сопло горелки.
  2. Резиновые трубки.
  3. Второй водяной затвор.
  4. Первый водяной затвор.
  5. Анод.
  6. Катод.
  7. Электроды.
  8. Ванна электролизера.

На рисунке 9 представлена принципиальная схема блока питания для электролизера нашей горелки.


Рис. 9. Блок питания электролизной горелки

На мощный выпрямитель нам понадобятся следующие детали:

  • Транзисторы: VT1 – МП26Б; VT2 – П308.
  • Тиристоры: VS1 – КУ202Н.
  • Диоды: VD1-VD4 – Д232; VD5 – Д226Б; VD6, VD7 – Д814Б.
  • Конденсаторы: 0,5 мкФ.
  • Переменные резисторы: R3 -22 кОм.
  • Резисторы: R1 – 30 кОм; R2 – 15 кОм; R4 – 800 Ом; R5 – 2,7 кОм; R6 – 3 кОм; R7 – 10 кОм.
  • PA1 – амперметр со шкалой измерения не менее 20 А.

Краткая инструкция по деталям к электролизеру.

Ванну можно сделать из старого аккумулятора. Пластины следует нарезать 150х150 мм из кровельного железа (толщина листа 0,5 мм). Для работы с вышеописанным блоком питания потребуется собрать электролизер на 81 ячейку. Чертеж, по которому выполняется монтаж, приведен на рисунке 10.

Рис. 10. Чертеж электролизера для водородной горелки

Заметим, что обслуживание такого устройства и управление им не вызывает трудностей.

Электролизер для автомобиля своими руками

В интернете можно найти много схем HHO систем, которые, если верить авторам, позволяют экономить от 30% до 50% топлива. Такие заявления слишком оптимистичны и, как правило, не подтверждаются никакими доказательствами. Упрощенная схема такой системы продемонстрирована на 11 рисунке.


Упрощенная схема электролизера для автомобиля

По идее, такое устройство должно снизить расход топлива за счет его полного выгорания. Для этого в воздушный фильтр топливной системы подается смесь Брауна. Это водород с кислородом, полученные из электролизера, запитанного от внутренней сети автомобиля, что повышает расход топлива. Замкнутый круг.

Безусловно, может быть задействована схема шим регулятора силы тока, использован более эффективный импульсный блок питания или другие хитрости, позволяющие снизить расход энергии. Иногда в интернете попадаются предложения приобрести низкоамперный БП для электролизера, что вообще является нонсенсом, поскольку производительность процесса напрямую зависит от силы тока.

Это как система Кузнецова, активатор воды которой утерян, а патент отсутствует и т.д. В приведенных видео, где рассказывают о неоспоримых преимуществах таких систем, практически нет аргументированных доводов. Это не значит, что идея не имеет прав на существование, но заявленная экономия «слегка» преувеличена.

Электролизер своими руками для отопления дома

Делать самодельный электролизер для отопления дома на данный момент не имеет смысла, поскольку стоимость водорода, полученного путем электролиза значительно дороже природного газа или других теплоносителей.

Также следует учитывать, что температуру горения водорода не выдержит никакой металл. Правда имеется решение, которое запатентовал Стен Мартин, позволяющее обойти эту проблему. Необходимо обратить внимание на ключевой момент, позволяющий отличить достойную идею от очевидного бреда. Разница между ними заключается в том, что на первый выдают патент, а второй находит своих сторонников в интернете.

На этом можно было бы и закончить статью о бытовых и промышленных электролизерах, но имеет смысл сделать небольшой обзор компаний, производящих эти устройства.

Обзор производителей электролизеров

Перечислим производителей, выпускающих топливные элементы на базе электролизеров, некоторые компании также выпускают и бытовые устройства: NEL Hydrogen (Норвегия, на рынке с 1927 года), Hydrogenics (Бельгия), Teledyne Inc (США), Уралхиммаш (Россия), РусАл (Россия, существенно усовершенствовали технологию Содерберга), РутТех (Россия).

Устройство, которое позволяет получать водород из воды – это водородный генератор. Зачастую их применяют в автомобилях. Применение подобного устройства в авто оправдано. Выработанный водород поступает во впускной коллектор движка. Это позволяет сэкономить топливо и иногда увеличить его мощность. В США такие генераторы выпускают на заводах. Стоят они не дешево - от 300 до 800 долларов. В нашей стране предпочтительно сделать генератор самостоятельно.

Принцип работы водородного генератора

Молекула воды - это соединение из водорода и кислорода. Атомы имеют возможность создавать ионы. Если вы наблюдали за экспериментами, в которых используется катушка Теслы, то должны знать, что атомы ионизуются под воздействием электрического поля. При этом водород будет образовывать положительные, а кислород отрицательные ионы. В водородных генераторах электрическое поле используется для отсоединения молекул воды друг от друга.

Итак, расположив два электрода в воде нам нужно создать электрическое поле среди них. Для этого их необходимо подключить к клеммам аккумулятора или любого другого источника питания. Анод является положительным, а катод отрицательным электродами. Ионы, которые образовались в воде, будут подтянуты к электроду, чья полярность противоположна. Когда ионы соприкасаются с электродами, то их заряд нейтрализуется из-за добавления или удаления электронов. Когда появившийся между электродами газ выходит на поверхность, то его нужно обязательно послать в двигатель.

Водородные ячейки для авто включают в себя сосуд с водой, который располагается под капотом. Обычная водопроводная вода наливается в сосуд и туда добавляют чайную ложку катализатора и соды. Внутрь погружены пластины, подключенные к аккумулятору. При включении в авто зажигания, конструкция (водородный генератор) производит выработку газа.

Какие электроды лучше использовать?

Первые в мире электроды были изготовлены из меди, но выяснилось, что они далеки от идеала. К тому же медь дает сильную реакцию при контакте с водой. Происходит выделение большого числа загрязнителей, поэтому использование меди далеко не лучший вариант. Мы рекомендуем вам использовать электроды, которые выполнены из нержавеющей стали. Для сокращения вероятности коррозии нужно выбирать нержавеющую сталь высокого качества . Толщина листов должна быть около 2 мм, для уменьшения сопротивления.

Описание процесса сборки генератора водорода

Разобравшись в тонкостях действия водородного генератора, перейдем к его созданию. Для того чтобы собрать водородный генератор своими руками нам будет нужно:

  • канистра из полиэтилена;
  • провода для соединения;
  • резина из силикона;
  • специальный герметик;
  • шланги с хомутами.

Подобрав все необходимое, приступим к изготовлению генератора своими руками.

Сделать своими руками генератор водорода оказалось довольно просто. К тому же благодаря «работе своими руками» получилось значительно сэкономить. Генератор, сделанный подобным образом, не будет стоить дороже 100 долларов. В современных условиях можно найти массу приспособлений, которые используют водород. Поскольку запасы водорода в воде почти безграничны, то это позволяет увидеть перспективу массового применения подобных или модернизированных установок в будущем.

Давно уже прошли те времена, когда загородный дом можно было обогреть лишь одним способом - сжигая в печке дрова или уголь. Современные отопительные приборы используют различные виды топлива и при этом автоматически поддерживают комфортную температуру в наших жилищах. Природный газ, дизель или мазут, электричество, гелио- и - вот неполный список альтернативных вариантов. Казалось бы - живи и радуйся, да вот только постоянный рост цен на топливо и оборудование вынуждает продолжать поиски дешёвых способов отопления. А вместе с тем неиссякаемый источник энергии - водород, буквально лежит у нас под ногами. И сегодня мы поговорим о том, как использовать в качестве горючего обычную воду, собрав генератор водорода своими руками.

Устройство и принцип работы генератора водорода

Заводской генератор водорода представляет собой внушительный агрегат

Использовать водород в качестве топлива для обогрева загородного дома выгодно не только по причине высокой теплотворной способности, но и потому, что в процессе его сжигания не выделяется вредных веществ. Как все помнят из школьного курса химии, при окислении двух атомов водорода (химическая формула H 2 – Hidrogenium) одним атомом кислорода, образуется молекула воды. При этом выделяется в три раза больше тепла, чем при сгорании природного газа. Можно сказать, что равных водороду среди других источников энергии нет, поскольку его запасы на Земле неисчерпаемы - мировой океан на 2/3 состоит из химического элемента H 2 , да и во всей Вселенной этот газ наряду с гелием является главным «строительным материалом». Вот только одна проблема - для получения чистого H 2 надо расщепить воду на составляющие части, а сделать это непросто. Учёные долгие годы искали способ извлечения водорода и остановились на электролизе.

Схема работы лабораторного электролизёра

Этот способ получения летучего газа заключается в том, что в воду на небольшом расстоянии друг от друга помещаются две металлические пластины, подключённые к источнику высокого напряжения. При подаче питания высокий электрический потенциал буквально разрывает молекулу воды на составляющие, высвобождая два атома водорода (HH) и один - кислорода (O). Выделяющийся газ назвали в честь физика Ю. Брауна. Его формула - HHO, а теплотворная способность - 121 МДж/кг. Газ Брауна горит открытым пламенем и не образует никаких вредных веществ. Главное достоинство этого вещества в том, что для его использования подойдёт обычный котёл, работающий на пропане или метане. Заметим только, что водород в соединении с кислородом образует гремучую смесь, поэтому потребуются дополнительные меры предосторожности.

Схема установки для получения газа Брауна

Генератор, предназначенный для получения газа Брауна в больших количествах, содержит несколько ячеек, каждая из которых вмещает в себя множество пар пластин-электродов. Они установлены в герметичной ёмкости, которая оборудована выходным патрубком для газа, клеммами для подключения питания и горловиной для заливки воды. Кроме того, установка оборудуется защитным клапаном и водяным затвором. Благодаря им устраняется возможность распространения обратного пламени. Водород горит только на выходе из горелки, а не воспламеняется во все стороны. Многократное увеличение полезной площади установки позволяет извлекать горючее вещество в количествах, достаточных для различных целей, включая обогрев жилых помещений. Вот только делать это, используя традиционный электролизёр, будет нерентабельно. Проще говоря, если потраченное на добычу водорода электричество напрямую использовать для отопления дома, то это будет намного выгоднее, чем топить котёл водородом.

Водородная топливная ячейка Стенли Мейера

Выход из сложившейся ситуации нашёл американский учёный Стенли Мейер. Его установка использовала не мощный электрический потенциал, а токи определённой частоты. Изобретение великого физика состояло в том, что молекула воды раскачивалась в такт изменяющимся электрическим импульсам и входила в резонанс, который достигал силы, достаточной для её расщепления на составляющие атомы. Для такого воздействия требовались в десятки раз меньшие токи, чем при работе привычной электролизной машины.

Видео: Топливная ячейка Стенли Мейера

За своё изобретение, которое могло бы освободить человечество от кабалы нефтяных магнатов, Стенли Мейер был убит, а труды его многолетних изысканий пропали неизвестно куда. Тем не менее сохранились отдельные записи учёного, на основании которых изобретатели многих стран мира пытаются строить подобные установки. И надо сказать, небезуспешно.

Преимущества газа Брауна как источника энергии

  • Вода, из которой получают HHO, является одним из наиболее распространённых веществ на нашей планете.
  • При сгорании этого вида топлива образуется водяной пар, который можно обратно конденсировать в жидкость и повторно использовать в качестве сырья.
  • В процессе сжигания гремучего газа не образуется никаких побочных продуктов, кроме воды. Можно сказать, что нет более экологичного вида топлива, чем газ Брауна.
  • При эксплуатации водородной отопительной установки выделяется водяной пар в количестве, достаточном для поддержания влажности в помещении на комфортном уровне.

Вам также может быть интересен материал о том, как соорудить самостоятельно газовый генератор:

Область применения

Сегодня электролизёр - такое же привычное устройство, как и генератор ацетилена или плазменный резак. Изначально водородные генераторы использовались сварщиками, поскольку носить за собой установку весом всего несколько килограмм было намного проще, чем перемещать огромные кислородные и ацетиленовые баллоны. При этом высокая энергоёмкость агрегатов решающего значения не имела - всё определяло удобство и практичность. В последние годы применение газа Брауна вышло за рамки привычных понятий о водороде, как топливе для газосварочных аппаратов. В перспективе возможности технологии очень широки, поскольку использование HHO имеет массу достоинств.

  • Сокращение расхода горючего на автотранспорте. Существующие автомобильные генераторы водорода позволяют использовать HHO как добавку к традиционному бензину, дизелю или газу. За счёт более полного сгорания топливной смеси можно добиться 20 – 25 % снижения потребления углеводородов.
  • Экономия топлива на тепловых электростанциях, использующих газ, уголь или мазут.
  • Снижение токсичности и повышение эффективности старых котельных.
  • Многократное снижение стоимости отопления жилых домов за счёт полной или частичной замены традиционных видов топлива газом Брауна.
  • Использование портативных установок получения HHO для бытовых нужд - приготовления пищи, получения тёплой воды и т. д.
  • Разработка принципиально новых, мощных и экологичных силовых установок.

Генератор водорода, построенный с использованием «Технологии водяных топливных ячеек» С. Мейера (а именно так назывался его трактат) можно купить - их изготовлением занимается множество компаний в США, Китае, Болгарии и других странах. Мы же предлагаем изготовить водородный генератор самостоятельно.

Видео: Как правильно обустроить водородное отопление

Что необходимо для изготовления топливной ячейки дома

Приступая к изготовлению водородной топливной ячейки, надо обязательно изучить теорию процесса образования гремучего газа. Это даст понимание происходящего в генераторе, поможет при настройке и эксплуатации оборудования. Кроме того, придётся запастись необходимыми материалами, большинство из которых будет нетрудно найти в торговой сети. Что же касается чертежей и инструкций, то мы постараемся раскрыть эти вопросы в полном объёме.

Проектирование водородного генератора: схемы и чертежи

Самодельная установка для получения газа Брауна состоит из реактора с установленными электродами, ШИМ-генератора для их питания, водяного затвора и соединительных проводов и шлангов. В настоящее время существует несколько схем электролизёров, использующих в качестве электродов пластины или трубки. Кроме того, в Сети можно найти и установку так называемого сухого электролиза. В отличие от традиционной конструкции, в таком аппарате не пластины устанавливаются в ёмкость с водой, а жидкость подаётся в зазор между плоскими электродами. Отказ от традиционной схемы позволяет значительно уменьшить габариты топливной ячейки.

Электрическая схема ШИМ-регулятора Схема единичной пары электродов, используемых в топливной ячейке Мейера Схема ячейки Мейера Электрическая схема ШИМ-регулятора Чертёж топливной ячейки
Чертёж топливной ячейки Электрическая схема ШИМ-регулятора Электрическая схема ШИМ-регулятора

В работе можно использовать чертежи и схемы рабочих электролизёров, которые можно адаптировать под собственные условия.

Выбор материалов для строительства генератора водорода

Для изготовления топливной ячейки практически никаких специфичных материалов не требуется. Единственное, с чем могут возникнуть сложности, так это электроды. Итак, что надо подготовить перед началом работы.

  1. Если выбранная вами конструкция представляет собой генератор «мокрого» типа, то понадобится герметичная ёмкость для воды, которая одновременно будет служить и корпусом реактора. Можно взять любой подходящий контейнер, главное требование - достаточная прочность и газонепроницаемость. Разумеется, при использовании в качестве электродов металлических пластин лучше использовать прямоугольную конструкцию, к примеру, тщательно загерметизированный корпус от автомобильного аккумулятора старого образца (чёрного цвета). Если же для получения HHO будут применяться трубки, то подойдёт и вместительная ёмкость от бытового фильтра для очистки воды. Самым же лучшим вариантом будет изготовление корпуса генератора из нержавеющей стали, например, марки 304 SSL.

    Электродная сборка для водородного генератора «мокрого» типа

    При выборе «сухой» топливной ячейки понадобится лист оргстекла или другого прозрачного пластика толщиной до 10 мм и уплотнительные кольца из технического силикона.

  2. Трубки или пластины из «нержавейки». Конечно, можно взять и обычный «чёрный» металл, однако в процессе работы электролизёра простое углеродистое железо быстро корродирует и электроды придётся часто менять. Применение же высокоуглеродистого металла, легированного хромом, даст генератору возможность работать длительное время. Умельцы, занимающиеся вопросом изготовления топливных ячеек, длительное время занимались подбором материала для электродов и остановились на нержавеющей стали марки 316 L. К слову, если в конструкции будут использоваться трубки из этого сплава, то их диаметр надо подобрать таким образом, чтобы при установке одной детали в другую между ними был зазор не более 1 мм. Для перфекционистов приводим точные размеры:
    - диаметр внешней трубки - 25.317 мм;
    - диаметр внутренней трубки зависит от толщины внешней. В любом случае он должен обеспечивать зазор между этими элементами равный 0.67 мм.

    От того, насколько точно будут подобраны параметры деталей водородного генератора, зависит его производительность

  3. ШИМ-генератор. Правильно собранная электрическая схема позволит в нужных пределах регулировать частоту тока, а это напрямую связано с возникновением резонансных явлений. Другими словами, чтобы началось выделение водорода, надо будет подобрать параметры питающего напряжения, поэтому сборке ШИМ-генератора уделяют особое внимание. Если вы хорошо знакомы с паяльником и сможете отличить транзистор от диода, то электрическую часть можно изготовить самостоятельно. В противном случае можно обратиться к знакомому электронщику или заказать изготовление импульсного источника питания в мастерской по ремонту электронных устройств.

    Импульсный блок питания, предназначенный для подключения к топливной ячейке, можно купить в Сети. Их изготовлением занимаются небольшие частные компании в нашей стране и за рубежом.

  4. Электрические провода для подключения. Достаточно будет проводников сечением 2 кв. мм.
  5. Бабблер. Этим причудливым названием умельцы обозвали самый обычный водяной затвор. Для него можно использовать любую герметичную ёмкость. В идеале она должна быть оборудована плотно закрывающейся крышкой, которая при возгорании газа внутри будет мгновенно сорвана. Кроме того, рекомендуется между электролизёром и бабблером устанавливать отсекатель, который будет препятствовать возвращению HHO в ячейку.

    Конструкция бабблера

  6. Шланги и фитинги. Для подключения генератора HHO понадобятся прозрачная пластиковая трубка, подводящий и отводящий фитинг и хомуты.
  7. Гайки, болты и шпильки. Они понадобятся для крепления частей электролизёра между собой.
  8. Катализатор реакции. Для того чтобы процесс образования HHO шёл интенсивнее, в реактор добавляют гидроксид калия KOH. Это вещество можно без проблем купить в Сети. На первое время будет достаточно не более 1 кг порошка.
  9. Автомобильный силикон или другой герметик.

Заметим, что полированные трубки использовать не рекомендуется. Наоборот, специалисты рекомендуют обработать детали наждачной бумагой для получения матовой поверхности. В дальнейшем это будет способствовать увеличению производительности установки.

Инструменты, которые потребуются в процессе работы

Прежде чем приступить к постройке топливной ячейки, подготовьте такие инструменты:

  • ножовку по металлу;
  • дрель с набором свёрл;
  • набор гаечных ключей;
  • плоская и шлицевая отвёртки;
  • угловая шлифмашина («болгарка») с установленным кругом для резки металла;
  • мультиметр и расходомер;
  • линейка;
  • маркер.

Кроме того, если вы будете самостоятельно заниматься постройкой ШИМ-генератора, то для его наладки потребуется осциллограф и частотомер. В рамках данной статьи мы этот вопрос поднимать не будем, поскольку изготовление и настройка импульсного блока питания лучше всего рассматривается специалистами на профильных форумах.

Обратите внимание на статью, в которой приведены другие источники энергии, которую можно использовать для обустройства отопления дома:

Инструкция: как сделать водородный генератор своими руками

Для изготовления топливной ячейки возьмём наиболее совершенную «сухую» схему электролизёра с использованием электродов в виде пластин из нержавеющей стали. Представленная ниже инструкция демонстрирует процесс создания водородного генератора от «А» до «Я», поэтому лучше придерживаться очерёдности действий.

Схема топливной ячейки «сухого» типа

  1. Изготовление корпуса топливной ячейки. В качестве боковых стенок каркаса выступают пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Надо понимать, что размер аппарата напрямую влияет на его производительность, однако, и затраты на получение HHO будут выше. Для изготовления топливной ячейки оптимальными будут габариты устройства от 150х150 мм до 250х250 мм.
  2. В каждой из пластин просверливают отверстие под входной (выходной) штуцер для воды. Кроме того, потребуется сверление в боковой стенке для выхода газа и четыре отверстия по углам для соединения элементов реактора между собой.

    Изготовление боковых стенок

  3. Воспользовавшись угловой шлифовальной машиной, из листа нержавеющей стали марки 316L вырезают пластины электродов. Их размеры должны быть меньше габаритов боковых стенок на 10 – 20 мм. Кроме того, изготавливая каждую деталь, необходимо оставлять небольшую контактную площадку в одном из углов. Это понадобится для соединения отрицательных и положительных электродов в группы перед их подключением к питающему напряжению.
  4. Для того чтобы получать достаточное количество HHO, нержавейку надо обработать мелкой наждачной бумагой с обеих сторон.
  5. В каждой из пластин сверлят два отверстия: сверлом диаметром 6 - 7 мм - для подачи воды в пространство между электродами и толщиной 8 - 10 мм - для отвода газа Брауна. Точки сверлений рассчитывают с учётом мест установки соответствующих подводящих и выходного патрубков.

    Вот такой комплект деталей необходимо подготовить перед сборкой топливной ячейки

  6. Начинают сборку генератора. Для этого в оргалитовые стенки устанавливают штуцеры подачи воды и отбора газа. Места их присоединений тщательно герметизируют при помощи автомобильного или сантехнического герметика.
  7. После этого в одну из прозрачных корпусных деталей устанавливают шпильки, после чего начинают укладку электродов.

    Укладку электродов начинают с уплотняющего кольца

    Обратите внимание: плоскость пластинчатых электродов должна быть ровной, иначе элементы с разноимёнными зарядами будут касаться, вызывая короткое замыкание!

  8. Пластины нержавеющей стали отделяют от боковых поверхностей реактора при помощи уплотнительных колец, которые можно сделать из силикона, паронита или другого материала. Важно только, чтобы его толщина не превышала 1 мм. Такие же детали используют в качестве дистанционных прокладок между пластинами. В процессе укладки следят, чтобы контактные площадки отрицательных и положительных электродов были сгруппированы в разных сторонах генератора.

    При сборке пластин важно правильно ориентировать выходные отверстия

  9. После укладки последней пластины устанавливают уплотнительное кольцо, после чего генератор закрывают второй оргалитовой стенкой, а саму конструкцию скрепляют при помощи шайб и гаек. Выполняя эту работу, обязательно следят за равномерностью затяжки и отсутствием перекосов между пластинами.

    При финальной затяжке обязательно контролируют параллельность боковых стенок. Это позволит избежать перекосов

  10. При помощи полиэтиленовых шлангов генератор подключают к ёмкости с водой и бабблеру.
  11. Контактные площадки электродов соединяют между собой любым способом, после чего к ним подключают провода питания.

    Собрав несколько топливных ячеек и включив их параллельно, можно получить достаточное количество газа Брауна

  12. На топливную ячейку подают напряжение от ШИМ-генератора, после чего производят настройку и регулировку аппарата по максимальному выходу газа HHO.

Для получения газа Брауна в количестве, достаточном для отопления или приготовления пищи, устанавливают несколько генераторов водорода, работающих параллельно.

Видео: Сборка устройства

Видео: Работа конструкции «сухого» типа

Отдельные моменты использования

Прежде всего, хотелось бы отметить, что традиционный метод сжигания природного газа или пропана в нашем случае не подойдёт, поскольку температура горения HHO превышает аналогичные показатели углеводородов в три с лишним раза. Как вы сами понимаете, такую температуру конструкционная сталь долго не выдержит. Сам Стенли Мейер рекомендовал использовать горелку необычной конструкции, схему которой мы приводим ниже.

Схема водородной горелки конструкции С. Мейера

Вся хитрость этого устройства заключается в том, что HHO (на схеме обозначено цифрой 72) проходит в камеру сжигания через вентиль 35. Горящая водородная смесь поднимается по каналу 63 и одновременно осуществляет процесс эжекции, увлекая за собой наружный воздух через регулируемые отверстия 13 и 70. Под колпаком 40 задерживается некоторое количество продуктов горения (водяного пара), которое по каналу 45 попадает в колонку горения и смешивается с горящим газом. Это позволяет снизить температуру горения в несколько раз.

Второй момент, на который хотелось бы обратить ваше внимание - жидкость, которую следует заливать в установку. Лучше всего использовать подготовленную воду, в которой не содержатся соли тяжёлых металлов. Идеальным вариантом является дистиллят, который можно приобрести в любом автомагазине или аптеке. Для успешной работы электролизёра в воду добавляют гидроксид калия KOH, из расчёта примерно одна столовая ложка порошка на ведро воды.

В процессе работы установки важно не перегревать генератор. При повышении температуры до 65 градусов Цельсия и более электроды аппарата будут загрязняться побочными продуктами реакции, из-за чего производительность электролизёра уменьшится. Если же это всё-таки произошло, то водородную ячейку придётся разобрать и удалить налёт при помощи наждачной бумаги.

И третье, на чём мы делаем особое ударение - безопасность. Помните о том, что смесь водорода и кислорода не случайно назвали гремучей. HHO представляет собой опасное химическое соединение, которое при небрежном обращении может привести к взрыву. Соблюдайте правила безопасности и будьте особенно аккуратны, экспериментируя с водородом. Только в этом случае «кирпичик», из которого состоит наша Вселенная, принесёт тепло и комфорт вашему дому.

Надеемся, статья стала для вас источником вдохновения, и вы, засучив рукава, приступите к изготовлению водородной топливной ячейки. Разумеется, все наши выкладки не являются истиной в последней инстанции, однако, их вполне можно использовать для создания действующей модели водородного генератора. Если же вы хотите полностью перейти на этот вид отопления, то вопрос придётся изучить более детально. Возможно, именно ваша установка станет краеугольным камнем, благодаря которому закончится передел энергетических рынков, а дешёвое и экологичное тепло войдёт в каждый дом.

Использование водорода в качестве энергоносителя для обогрева дома – идея весьма заманчивая, ведь его теплотворная способность (33.2 кВт / м3) превышает более чем в 3 раза показатель природного газа (9.3 кВт / м3). Теоретически, чтобы извлечь горючий газ из воды с последующим сжиганием его в котле, можно использовать водородный генератор для отопления. О том, что из этого может получиться и как сделать такое устройство своими руками, будет рассказано в данной статье.

Принцип работы генератора

Как энергоноситель водород действительно не имеет себе равных, а запасы его практически неисчерпаемы. Как мы уже сказали, при сжигании он выделяет огромное количество тепловой энергии, несравнимо большее, нежели любое углеводородное топливо. Вместо вредных соединений, выбрасываемых в атмосферу при использовании природного газа, при горении водорода образуется обычная вода в виде пара. Одна беда: данный химический элемент не встречается в природе в свободном виде, только в соединении с другими веществами.

Одно из таких соединений – обычная вода, представляющая собой полностью окисленный водород. Над ее расщеплением на составные элементы работали многие ученые в течение долгих лет. Нельзя сказать, что безрезультатно, ведь техническое решение по разделению воды все же было найдено. Его суть – в химической реакции электролиза, в результате которой происходит расщепление воды на кислород и водород, полученную смесь назвали гремучим газом или газом Брауна. Ниже показана схема водородного генератора (электролизера), работающего на электричестве:

Электролизеры производятся серийно и предназначены для газопламенных (сварочных) работ. Ток определенной силы и частоты подается на группы металлических пластин, погруженных в воду. В результате протекающей реакции электролиза выделяются кислород и водород вперемешку с водяным паром. Для его отделения газы пропускаются через сепаратор, после чего подаются на горелку. Дабы избежать обратного удара и взрыва, на подаче устанавливается клапан, пропускающий горючее только в одну сторону.

Для контроля за уровнем воды и своевременной подпитки конструкцией предусмотрен специальный датчик, по сигналу которого производится ее впрыск в рабочее пространство электролизера. За превышением давления внутри сосуда следит аварийный выключатель и сбросной клапан. Обслуживание водородного генератора заключается в периодическом добавлении воды, и на этом все.

Водородное отопление: миф или реальность?

Генератор для сварочных работ – это на данный момент единственное практическое применение электролитическому расщеплению воды. Использовать его для отопления дома нецелесообразно и вот почему. Затраты энергоносителей при газопламенных работах не так важны, главное, что сварщику не нужно таскать тяжеленные баллоны и возиться со шлангами. Другое дело – отопление жилища, где каждая копейка на счету. И тут водород проигрывает всем существующим ныне видам топлива.

Важно. Затраты электроэнергии на выделение горючего из воды методом электролиза будут гораздо выше, нежели гремучий газ сможет выделить при сжигании.

Серийные сварочные генераторы стоят немалых денег, поскольку в них используются катализаторы процесса электролиза, в состав которых входит платина. Можно сделать водородный генератор своими руками, но его эффективность будет еще ниже, чем у заводского. Получить горючий газ вам точно удастся, но вряд ли его хватит на обогрев хотя бы одной большой комнаты, не то что целого дома. А если и хватит, то придется оплачивать баснословные счета за электричество.

Чем тратить время и усилия на получение бесплатного топлива, которого не существует априори, проще смастерить своими руками простой электродный котел. Можете быть уверены, что так вы израсходуете гораздо меньше энергии с большей пользой. Впрочем, домашние мастера – энтузиасты всегда могут попробовать свои силы и собрать дома электролизер, с целью провести эксперименты и убедиться во всем самолично. Один из подобных экспериментов показан на видео:

Как изготовить генератор

Масса интернет-ресурсов публикуют самые разные схемы и чертежи генератора для получения водорода, но все они действуют по одному принципу. Мы предложим вашему вниманию чертеж простого устройства, взятый из научно-популярной литературы:

Здесь электролизер представляет собой группу металлических пластин, стянутых между собой болтами. Между ними установлены изоляционные прокладки, крайние толстые обкладки тоже изготовлены из диэлектрика. От штуцера, вмонтированного в одну из обкладок, идет трубка для подачи газа в сосуд с водой, а из него – во второй. Задача емкостей – отделять паровую составляющую и накапливать смесь водорода с кислородом, чтобы подавать его под давлением.

Совет. Электролитические пластины для генератора надо делать из нержавеющей стали, легированной титаном. Он послужит дополнительным катализатором реакции расщепления.

Пластины, что служат электродами, могут быть произвольного размера. Но надо понимать, что производительность аппарата зависит от их площади поверхности. Чем большее число электродов удастся задействовать в процессе, тем лучше. Но при этом и потребляемый ток будет выше, это следует учитывать. К концам пластин припаиваются провода, ведущие к источнику электричества. Здесь тоже есть поле для экспериментов: можно подавать на электролизер разное напряжение с помощью регулируемого блока питания.

В качестве электролизера можно применить пластиковый контейнер от водяного фильтра, поместив в него электроды из нержавеющих трубок. Изделие удобно тем, что его легко герметизировать от окружающей среды, выводя трубку и провода через отверстия в крышке. Другое дело, что этот самодельный водородный генератор обладает невысокой производительностью из-за малой площади электродов.

Заключение

На данный момент не существует надежной и эффективной технологии, позволяющей реализовать водородное отопление частного дома. Те генераторы, что имеются в продаже, могут успешно применяться для обработки металлов, но не для производства горючего для котла. Попытки организовать подобный обогрев приведут к перерасходу электроэнергии, не считая затрат на оборудование.

Поделитесь статьей с друзьями:

Похожие статьи

Хочу сделать электролизную горелку - Самодельное сварочное и вспомогательное оборудование

Неспешно делаю электролизную горелку.

Подобрал материалы для электролизера. Крайние пластины, стягивающие конструкцию, очень не хотелось делать из традиционно применяемого оргстекла. Нашел подходящую плиту толщиной 4 мм из, как мне показалось, нержавейки. Однако, когда распилил болгаркой, "нержавейка" оказалась никелированной латунью. Для впайки штуцеров это даже лучше, но не нарушит ли это работу электролизера (когда промежуточные пластины из нержавейки)? Разнородные металлы как-никак. К крайним латунным пластинам собираюсь подводить ток от источника.

 

Питание электролизера - от внешнего сварочника ММА.

Схема управления приведена в аттаче. Основна мысль - автоматическое поддержание давления. Использован автомобильный датчик давления масла, от Волги, 2106, ЗИЛа и т.п. (машин со стрелочным показометром давления масла). На IC1 собран компаратор, управляющий силовым ключом VT1. 555 выбрана как дешевая, доступная, с однополярным питанием и стабильно работающая, использован только компаратор. При повышении давления сверх установленного R5 на выходе компаратора появляется низкий уровень, отключающий электролизер, при снижении давления - обратный процесс.

На IC2 (работающей также в режиме компаратора) собран сигнализатор перегрева электролизера с датчиком NTC1, включается световая и звуковая (зуммер HA1 со встроенным звуковым генератором) сигнализация, требующая погасить горелку и выключить питание электролизера до его остывания. Автоматическое отключение электролизера не сделал по той причине, что это при работающей горелке приведет к обратному удару.

Насколько правильно реализована стабилизация давления (не будет ли мешающих работе горелки колебаний давления?) и как это делается в фирменных изделиях?

Генератор водорода: принцип работы, преимущества водородного генератора

Водород используется в качестве газа-носителя при проведении хроматографических исследований. Для постоянного питания лабораторного оборудования необходимо либо подключать баллоны с H2 под давлением, либо генератор водорода. Второй вариант предпочтительнее по нескольким причинам, и все они будут рассмотрены в этой статье наряду с другими темами:

Преимущества генераторов водорода

Использование баллонного H2 приводит к повышению стоимости производственного цикла: компания вынуждена постоянно закупать и доставлять газ, из-за чего весь процесс работы ставится в зависимость от регулярности поставок. Кроме того, хранение баллонов под давлением — это всегда повышенный риск утечки, взрывов и пожаров.

Установка генератора водорода позволяет получать нужное количество вещества высокой степени очистки (до 99,999%). В результате предприятие оптимизирует структуру расходов, добиваясь при этом постоянного и равномерного проведения хроматографических исследований. Обеспечиваются и дополнительные преимущества:

  • Прибор генерирует газ только по мере необходимости: не нужно хранить водород, что исключает вероятность выброса газа в помещение.
  • Концентрация получаемого вещества ниже взрывоопасной: полностью соблюдается техника безопасности, минимизируются возможные травмы на производстве.
  • Оператор полностью контролирует качество получаемого газа, а в случае его снижения может предпринять меры по дополнительной очистке.

Принцип работы оборудования

Генератор водорода, купить который может любая компания или лаборатория, получает газ из дистиллята. Причем его качество влияет на процентное содержание примесей в готовом продукте. Если в генератор чистого водорода поступает вода с высокой концентрацией посторонних ионов, она несколько раз проходит через деионизационный фильтр и только потом попадает в электролизер. Последующие этапы получения H2 выглядят следующим образом:

  • Дистиллят расщепляется на кислород и водород в процессе электролиза (в качестве электролита применяется ионообменная мембрана).
  • О2 попадает в питающий бак, а потом сбрасывается в атмосферу, как побочный продукт работы устройства.
  • H2 подается в сепаратор, отделяется от воды, которая затем снова поступает в питающий бак. Это обеспечивает непрерывность процесса получения нужного вещества.
  • Водород еще раз проходит через разделяющую мембрану, удаляющую из газа остаточные молекулы кислорода, и поступает в хроматографическое оборудование.

По этому принципу работает любой водородный генератор, купить который предлагают современные производители. Технические параметры зависят от модели.

Особенности и возможности генераторов водорода

Главное требование к прибору — качество получаемого вещества. Генератор водорода, купить который предлагает НПФ «Мета-хром», производит H2 высшей категории, соответствующий ГОСТу. То есть он может использоваться в качестве источника газа-носителя для питания высокоточного лабораторного оборудования. Это актуальное решение, если потребителю по каким-либо причинам недоступен гелий: например, в случаях работы прибора с детектором по теплопроводности.

Современное оборудование полностью автоматизировано за счет наличия большого количества датчиков, контролирующих все этапы получения газа. В свою очередь датчиками управляет микропроцессор. Он позволяет оператору задавать нужные режимы работы с помощью клавиатуры. Генератор водорода, цена которого является доступной, регулирует следующие параметры:

  • Давление полученного вещества, подаваемого на хроматографическую линию.
  • Уровень заливаемого в бак дистиллята и его расход.
  • Герметичность газовых магистралей: при обнаружении утечки сразу подается соответствующий сигнал, работа прекращается.
  • Параметры тока в электролизере.

Выбор прибора

Когда выбирается генератор водорода, цена модели обычно отражает ее возможности. Чем их больше, тем удобнее прибор в регулярном использовании. К наиболее важным параметрам относятся:

  • Микропроцессорное управление для точного задания рабочих параметров.
  • Качество очистки готового продукта: желательно, чтобы техника поддерживала многоступенчатую подготовку H2.
  • КПД электролизера: чем он выше, тем меньше энергии расходуется на поддержание расщепления воды.
  • Возможность дозаливки дистиллята без отключения устройства для обеспечения непрерывности процессов.
  • Продуманная защита от повышения тока в камере электролиза или в случае превышения давления в питающих трубах. Оптимально, если устройство сразу отключается или автоматически меняет рабочие параметры.
  • Регулируемая производительность H2. Наличие этой функции позволяет оператору контролировать объемы генерируемого газа. Сокращается нагрузка на электролизер, повышается срок его службы без необходимости замены.
  • Управление температурным режимом дожигателя кислорода. Чем больше параметров, которые позволяют регулировать генератор чистого водорода, тем проще отладить производственный процесс.
  • Индикация влажности вещества (исключает риск попадания влаги в питающие линии).

Существуют и другие параметры, на которые рекомендуется обратить внимание перед тем, как купить водородный генератор: цена устройства, производительность, степень очистки газа, стабильность давления, обводненность готового вещества, время выхода на режим, потребляемая мощность и габариты.

Обслуживание генераторов водорода

Современные устройства не требуют сложной пусконаладки или дорогостоящего обслуживания. Это универсальные приборы, которые удобно использовать на производствах в любой отрасли промышленности. Управление осуществляется через мини-клавиатуры, а результаты выводятся на ЖК-монитор.

Использование прибора позволяет полностью отказаться или существенно сократить объемы потребления баллонного H2 и повышает эффективность работы предприятий.

Электролиз воды – метод производства зеленого водорода

Текущая трансформация энергии предполагает стремление к производству энергии с низким или нулевым уровнем выбросов. Одной из быстро развивающихся технологий являются топливные элементы, использующие водород. Однако для того, чтобы его можно было считать экологическим источником энергии, необходимо, чтобы как при его производстве, так и при использовании не выделялись вредные вещества. Получение водорода таким способом делает возможным процесс электролиза воды.Если с ним не связаны выбросы, газ, полученный таким образом, называется зеленым водородом.

Что такое электролиз воды?

Электролиз — это любой процесс, при котором при протекании электрического тока через вещество изменяется его химическая структура. Электролиз воды основан на разложении воды на ионы (диссоциация) под действием напряжения не менее 1,229 В. Катодная реакция восстановления:

2H 2 O + 2eˉ → H 2 + 2OHˉ

Образует ионы водорода и ОН - .На аноде, в свою очередь, происходит окисление:

2H 2 O → O 2 + 4H + + 4eˉ

Его результатом является образование молекулярного кислорода, ионов водорода и электронов.

Анионы ОН - сочетаются с катионами Н + . После умножения катодной реакции на 2, чтобы согласовать число электронов и ионов, итоговое уравнение реакции выглядит следующим образом:

2H 2 O → 2H 2 + O 2

История электролиза воды

В 1800 году Николсон и Карлайл открыли распад воды на ионы под действием приложенного напряжения.Спустя сто лет в эксплуатации уже находилось более 400 промышленных электролизеров. В 1939 году была введена в эксплуатацию первая крупная установка по производству 10 000 нормальных кубометров водорода в час. В последующие десятилетия появились различные технологии: твердый полимерный электролит (SPE), твердый оксид, щелочная ячейка и протонообменные мембраны (PEM). В настоящее время эти технологии совершенствуются, и в лабораториях все еще проводятся испытания новых методов электролиза воды.

Технологии электролиза воды

Щелочная ячейка

В щелочной ячейке катод и анод находятся в воде.Поскольку чистая вода не является хорошим проводником, в нее добавляют кислоты или основания, обычно H 2 SO 4 , KOH или NaOH. Чтобы предотвратить повторную сборку кислорода и водорода в воде, между электродами помещают сепаратор, обычно из пористого, насыщенного электролитом, ионопроводящего материала. Возможна конфигурация электродов, оставляющая расстояние в несколько миллиметров от сепаратора, или такое, при котором они плотно прилегают к сепаратору. В первом случае достижимая плотность тока ограничена несколькими сотнями миллиампер на см 2 из-за того, что образующиеся пузырьки газа образуют резистивный слой на поверхности электродов.В случае электродов, близко примыкающих к сепаратору, можно достичь более высоких плотностей тока, поскольку газ генерируется на другой стороне электродов. КПД ячейки зависит от плотности тока, однако, чем она выше, тем выше эксплуатационные расходы. По этой причине значение этого параметра выбрано как компромиссное.

Электролиз щелочной воды является зрелой технологией. Существуют электролизеры, которые могут производить до 60 кг водорода в час. Благодаря достаточно длительному сроку эксплуатации можно сказать, что их использование экономически эффективно.Однако щелочные электролизеры не проявляют гибкости при изменении рабочих характеристик источника. Между тем, это необходимое условие сотрудничества с неуправляемыми источниками, к которым относятся возобновляемые источники энергии, сильно зависящие от погодных условий.

Электролизеры с полимерной электролитической мембраной (ПЭМ)

Электролизеры

PEM (полимерная электролитная мембрана или протонообменная мембрана ) отличаются от описанной выше технологии щелочных электролизеров типом используемого электролита.В данном случае это твердый полимер. В таком электролизере используется только деионизированная вода без дополнительного электролита. Электроды плотно прилегают к электролиту, образуя разделительную мембрану. При электролизе анод вырабатывает ионы кислорода и водорода, т.е. протоны. Последние транспортируются через мембрану и соединяются с электронами на катоде, образуя водород.

Использование технологии ФЭМ для электролиза воды имеет ряд преимуществ, среди которых возможность достижения высокой плотности тока и КПД, а кроме того, использование деионизированной воды позволяет получать водород с высоким уровнем чистоты.Их недостатками, однако, являются высокая стоимость материалов, из которых они состоят, и необходимость использования воды высокой чистоты, получение которой также обходится дорого.

Высокотемпературный электролиз водяного пара

Проведение высокотемпературного электролиза эффективно, поскольку для него требуется меньшее количество электроэнергии. Тепло, необходимое для повышения температуры до соответствующего уровня, может быть получено из возобновляемых источников или быть отработанным теплом атомных электростанций или любого высокотемпературного процесса.

Высокотемпературный электролиз водяного пара обычно проводят при температуре 750-950°С. Благодаря высокой тепловой энергии потребление электроэнергии в этом процессе ниже примерно на 35% по сравнению с электролизом, проводимым при низкой температуре. Кроме того, эффективность высокотемпературного электролиза очень высока (до 100%). Тем не менее, это относительно новая технология, которая требует много исследований, чтобы быть прибыльной.

Перспективы электролиза воды

Электролиз воды позволяет получать водород очень высокой чистоты.Если используются возобновляемые источники энергии, это также может способствовать обезуглероживанию путем производства зеленого водорода. Самая старая и самая передовая технология — щелочной электролиз, но у нее есть ограничения, которые заставляют ученых все еще искать более совершенные методы. Технологии ПЭМ и высокотемпературного электролиза постоянно совершенствуются и появляются новые. Прогнозируется, что в ближайшем будущем электролиз воды станет все более распространенным методом децентрализованного производства водорода.В стремлении к декарбонизации зеленый водород может стать важным источником энергии.

.

ЭЛЕКТРОЛИЗАТОР: Электролизер для воды - устройство для проведения электролиза воды www.woda.com.pl

Электролиз — явление изменения структуры вещества при приложении к нему электрического напряжения. В приложениях по очистке воды это явление используется для визуализации веществ (растворенных в ней) в воде. С помощью электролизера можно продемонстрировать наличие в воде электропроводящих элементов.

В результате электролиза, проведенного на водопроводной воде, соединения, находящиеся в твердом состоянии, осаждаются в сосуде в виде твердого вещества.Это вещества, способные ионизироваться, т.е. распадаться на ионы.

Проще говоря, электролиз показывает наличие примесей в воде. Однако следует учитывать, что некоторые элементы в воде не вредны для живых организмов и даже рекомендованы для них. Поэтому электролиз водопроводной воды нельзя рассматривать как показатель ее химической чистоты - электролиз может лишь показать, что в воде есть вещества, не имеющие ничего общего с чистой водой.

Электролизер питается от сети переменного тока 220/230В. Будьте осторожны при его использовании и не проводите электроэпиляцию детям без присмотра взрослых.

Электролизер оснащен комплектом из двух пар электродов (анод и катод), которые позволяют сравнивать чистоту воды в двух сосудах одновременно. В типичном приложении одна пара электродов помещается в кастрюлю с водопроводной водой, а другая пара электродов в кастрюлю с водой из фильтра обратного осмоса. Подсоединив электролизер к электрической розетке и повернув переключатель в рабочее положение (положение ON), через несколько секунд вы заметите продолжающийся процесс электролиза и выпадение включений в сосуд с водопроводной водой.

Внимание! Для процесса электролиза нельзя использовать металлические и другие электропроводящие сосуды. Лучше всего для этой цели использовать прозрачные стеклянные сосуды (стаканы и т.п.).

Товар может быть заказан только юридическими лицами - из соображений безопасности мы не продаем электролизер физическим лицам.

.90,000 Air Liquide трансформирует свою сеть в Германии, подключив электролизер водорода из возобновляемых источников

Air Liquide планирует построить завод по электролизу водорода в Оберхаузене, Германия. Общая мощность составит 30 мегаватт (МВт), а на первом этапе проекта, который будет запущен в начале 2023 года, мощность достигнет 20 МВт. Проект уникален тем, что электролизер будет подключен к существующей трубопроводной инфраструктуре Air Liquide для снабжения возобновляемым водородом ключевых отраслей промышленности и обеспечения мобильности в одном из наиболее промышленно развитых регионов Германии.Для ускорения реализации этого проекта Министерство экономики и энергетики Германии предоставило финансирование из государственных средств. Этот электролизер мирового класса станет первым электролизером, построенным в рамках партнерства Air Liquide с Siemens Energy.

Новый электролизер PEM (с использованием протонообменной мембраны, Proton Exchange Membrane ), который будет построен компанией Air Liquide, будет производить водород с использованием возобновляемых источников энергии: воды и возобновляемой электроэнергии. Технологическое решение для этого проекта разрабатывается в рамках ранее объявленного партнерства между Air Liquide и Siemens Energy . К 2023 году оба партнера запустят электролизер мощностью 20 МВт, который будет производить водород и кислород из возобновляемых источников. На втором этапе Air Liquide планирует увеличить мощность станции до 30 МВт.

Электролизер PEM планируется запустить в начале 2023 года, и он станет первым крупномасштабным производством водорода из возобновляемых источников, подключенным к существующим водородным и кислородным трубопроводам, к которым сегодня уже подключено почти 15 крупных промышленных предприятий.Это поддержит такие отрасли, как металлургическая, химическая, нефтеперерабатывающая и транспортная промышленность Северного Рейна-Вестфалии, в их усилиях по сокращению своего углеродного следа за счет увеличения доступности газов, производимых из возобновляемой электроэнергии.

Этот проект получил уведомление о финансировании от Министерства экономики и энергетики Германии . Элизабет Винкельмайер-Беккер , парламентский статс-секретарь Федерального министерства экономики, сказала: «Благодаря Национальной водородной стратегии мы сделали решающий шаг к дальнейшему развитию преобразования энергии.В то же время развитие водородной экономики открывает большие экономические возможности, особенно после последствий пандемии коронавируса. Поэтому Минэкономики уже год полным ходом работает над созданием нормативно-правовой базы. Сейчас нужны конкретные и амбициозные проекты, и проект Air Liquide в Германии в этом плане показателен. Он показывает, как можно использовать «зеленый» водород для устойчивого преобразования промышленности, а также некоторых транспортных секторов.В то же время этот проект является сильным сигналом для позиционирования Рейнско-Рурского региона в водородном секторе».

Франсуа Жакоу , исполнительный вице-президент и член исполнительного комитета, курирующего Europe Industries, сказал: «Мы высоко ценим поддержку Министерства экономики Германии в этом новаторском проекте. Используя существующую сеть водородных трубопроводов Air Liquide, произведенный водород из возобновляемых источников ускорит декарбонизацию промышленного бассейна Рейн-Рур и поможет увеличить экологически чистую мобильность в этом густонаселенном регионе.Строительство завода по производству водорода из возобновляемых источников в промышленных масштабах станет первой реализацией партнерства между Air Liquide и Siemens Energy, призванного обеспечить появление устойчивой водородной экономики в Европе. Это соответствует Целям устойчивого развития Air Liquide, которые включают вклад в развитие общества с низким уровнем выбросов углерода, одним из ключевых вопросов которого является водород». .

Что такое процесс электролиза воды?

В последнее время мы заметили недостоверную и вводящую в заблуждение информацию о качестве воды из сетей общего пользования, а также бутилированной минеральной воды, основанную на псевдоэксперименте и опыте по «проверке воды», т.н. электролизер. В статье ниже мы объясняем это явление.

«Тест» заключается в помещении двух электродов в воду и подключении их к электричеству. Через некоторое время в стакане появляется коричневый осадок, который может быть неверно истолкован неопытными людьми - т.е.как знак очень загрязненной и почти ядовитой воды. При этом один из электродов представляет собой железный стержень, который начинает растворяться при подключении к электричеству. Затем происходит химическая реакция (благодаря второму электроду) и в стекле образуется осадок. Это происходит, когда в воде есть минеральные соли. Объясню это одним предложением: Чем больше осадка, тем лучше, потому что это означает, что в воде больше минералов.

Независимо от того, проверяем ли мы этим «тестом» водопроводную или минеральную воду любимой марки, после такого эксперимента из нее всегда будет выпадать некрасивый осадок.Однако это не означает, что они являются вредными веществами. Вода должна содержать определенные элементы, полезные для организма человека, что делает его здоровым. Этот осадок не будет откладываться в осмосной или дистиллированной воде, которая не подходит для питья человека, так как вымывает минералы и минералы, необходимые для нашего функционирования.

Подобный эксперимент с таким устройством использовался в аферах, где мошенники поощряли покупку дорогих фильтров и устройств обратного осмоса, которые должны были использоваться для «очистки воды».Такое действие наказывается лишением свободы на срок до 8 лет.

Приглашаем вас ознакомиться с достоверной информацией по этому вопросу, в том числе с мнением проф. доктор хаб. Яцек Навроцкий с кафедры технологии водоподготовки химического факультета Университета Адам Мицкевич из Познани по этой ссылке .

Итого:

  • Крайне важно отличать профессиональные водоочистные сооружения от тех, которые предлагают мошенники и аферисты как единственные, обеспечивающие безопасную питьевую воду, основывая свою рекламную стратегию на ложных фактах;
  • Потребители воды имеют ряд возможностей получить достоверную информацию о качестве питьевой воды и таким образом защитить себя от недобросовестных распространителей бытовой техники, предназначенной для очистки питьевой воды.

В приведенных ниже ссылках для загрузки документы, содержащие всю информацию о ценных ингредиентах и ​​минералах, которые содержит наша природная минеральная вода Kinga Pienińska:

.

Водородная золотая лихорадка. Где будут построены первые установки?

Водородные долины должны стать центром специализации водородной экономики. Это регионы, где запланированы многочисленные инвестиции в производство, хранение и транспортировку водорода вплоть до его конечного использования в транспорте, промышленности и энергетике. Создание водородных долин не ново. Согласно отчету Совместного предприятия по топливным элементам и водороду, в мире насчитывается более 30 таких регионов, где инвестиционные планы превышают 30 миллиардов евро.Чаще всего водородные долины создают предприниматели и регионы снизу вверх. Это не отдельные пилотные проекты, а масштабные инвестиции в использование водорода не в одном секторе экономики.

В Польше Агентство промышленного развития также занимается созданием долин, и во время подписания соглашения о Нижнесилезской водородной долине на церемонии присутствовал даже премьер-министр правительства. Сейчас речь идет о следующих долинах: Силезии, Подкарпатье, Нижней Силезии, Мазовии и Великой Польше.Более того, Поморский водородный кластер работает уже три года.

— Одним из примечательных элементов является специализация водородных долин. В Польше их будет несколько и важно, чтобы каждый из них был ориентирован на определенную специализацию. Затем экосистема должна сосредоточиться на решениях для масштабирования. Специализации возникают естественным образом — в каждой долине есть якорная компания, то есть предприниматель, играющий ключевую роль в цепочке поставок, например, Lotos, PKN Orlen, KGHM, — говорит Агнешка Марчиняк, директор отдела стратегии и развития Национального центра Исследования и разработки во время Европейского экономического конгресса.

Где водород?

С одной стороны, Польша является крупным производителем водорода, третьим в Европейском Союзе и пятым в мире, но с другой стороны, у нас нет на рынке чистого водорода, который можно было бы использовать в таких секторах, как транспорт. Группы Азоты, Лотос и ПКН Орлен производят большое количество серого водорода в процессе паровой конверсии природного газа и используют его непосредственно для производства удобрений и на нефтеперерабатывающих заводах. Он также генерирует выбросы CO2.

- Все наши водородные проекты будут связаны с водородом с низким и нулевым уровнем выбросов, - заявил Гжегож Юзвяк, директорводород в PKN Orlen во время Европейского экономического конгресса.

В Тшебине компания Orlen планирует в этом году ввести в эксплуатацию водородный хаб. Завод по производству биотоплива будет производить 350 тонн биоводорода в год. В свою очередь, во Влоцлавеке водород будет производиться в процессе электролиза, а дальнейшие инвестиции в производство водорода из отходов компания Orlen планирует в Плоцке и Остроленке.

Lotos в Померании планирует построить электролизер мощностью 100 МВт за один миллиард злотых для использования водорода на нефтеперерабатывающем заводе, а также для городского и морского транспорта.- Мы работаем над польским электролизером, чтобы эффективно зарабатывать на водороде, - добавил Ярослав Врубель, вице-президент правления Grupa Lotos.

Водородный орел

Крупные компании рассчитывают на государственную помощь из государственного бюджета в рамках механизма «Важные проекты общеевропейского интереса» (IPCEI), т.е. важные проекты общеевропейского интереса. Польша завершила предварительный отбор проектов для одобрения Европейской комиссией, государственную помощь, скорее всего, получат: Экоэнергетика, PKN Orlen, Lotos Asfalt, PGNiG и PGNiG Termika, PESA, Polenergia, Synthos и Tauron.

Компания Orlen представила IPCEI проект Hydrogen Eagle, в рамках которого она планирует построить более 100 заправочных станций и электролизеров мощностью 250 МВт. Помимо транспорта, водород также будет потерян для промышленности.

PGNiG Termika планирует производить водород на ТЭЦ Секерки в когенерационной установке на биомассе. Водород будет снабжать транспорт и использоваться для совместного сжигания в планируемом новом газовом блоке ТЭЦ Секерки. Polenergia, присоединившаяся к Подкарпатской водородной долине, планирует сжигать водород на Новосаржинской ТЭЦ.Synthos работает над получением водорода из высокотемпературного пара.

Следующим этапом после одобрения помощи Европейской комиссией станет международное сотрудничество. - Мы нашли около 20 партнеров и подписали с ними протоколы о намерениях, которые позволят создать водородные коридоры в Европе, - заявил Юзвяк.

- Европейский союз объявит конкурс на международные водородные долины - они могут получить значительное финансирование из европейских фондов, - отметила Агнешка Марчиняк.

Накануне золотой лихорадки

- Мы надеемся, что Нижнесилезская водородная долина, основанная на сильном автомобильном секторе региона, позволит экономике выйти на более высокий уровень современных технологий. Благодаря отлично развивающейся возобновляемой энергетике в Нижней Силезии у нас есть шанс стать пионером в самом желательном направлении – зеленом водороде, – говорит Агнешка Спиридович, президент Кластера развития возобновляемой энергетики и энергоэффективности Згожелец.- На сегодняшний день у нас уже есть члены, занимающиеся этой темой. Например, во Вроцлавском университете науки и технологий есть лаборатория резервуаров с водородом, Grupa Azoty уже производит водород, Toyota — производитель первого серийного водородного легкового автомобиля, а Zklaster строит хранилище водорода емкостью более 2 МВтч, - добавляет Агнешка Спиридович.

Эксперты сходятся во мнении, что локальных водородных решений, таких как зарядные станции и водородные автобусы, может быть много, но это не создаст добавленной стоимости и водородной экономики.Сама PKN Orlen имеет 14 протоколов о намерениях в отношении использования водорода в городском транспорте. Однако водород требует другого подхода, чем ископаемое топливо, он будет распределяться не централизованно, а из нескольких рассредоточенных источников. - Водород - децентрализованная среда, он самый дешевый там, где мы его производим. Это ускорит формирование распределенной энергии. Мы будем использовать его на все более низких уровнях экономики», — сказал Томохо Умеда, генеральный директор Hynfra.

По его мнению, скорее всего, первые органы местного самоуправления будут использовать водород для обезуглероживания отопления.- Вводить в сеть чистый водород, полученный из электролизера, не имеет смысла, потому что это не более чем совместное сжигание, - подчеркнул Умеда. В то же время он добавил, что у Польши есть большие шансы использовать водород для стабилизации ВИЭ, потому что водород может стать ответом на сетевые проблемы. Тогда окажется, что места для новых проектов по возобновляемой энергетике предостаточно. «Мы накануне золотой лихорадки, — заявил Умеда.

Из Олавской рощи в энергетический рай

Надежды на развитие водородной экономики огромны, пока эффекты и работа правительства по созданию стратегических документов скромны.

- В последний год водородным технологиям на топливно-энергетическом рынке уделяется большое внимание со стороны инвесторов, предприятий, а также органов государственной и региональной власти. Как на уровне ЕС, так и отдельных государств-членов создаются стратегические документы по развитию инфраструктуры производства и использования этого топлива. Он вызывает большой интерес не только со стороны инвесторов, но и со стороны средств массовой информации, что способствовало захлестывающей волне новостей о потенциальных инвестициях в водород.Однако большинство этих проектов все еще находятся на стадии идей или финансирования из-за высоких технологических затрат. Наблюдая за инвестициями в нашей стране, я считаю, что в окончательной реализации их всего несколько, - говорит Роберт Жмуда, вице-президент правления SBB Energy.

Читайте также: Новый накопитель энергии

Компания выиграла тендер на строительство системы хранения энергии на основе водорода в Гае Олавском. Он является частью проекта строительства высокоэффективной тригенерационной установки, софинансируемого Национальным фондом охраны окружающей среды и водного хозяйства из Оперативной программы «Инфраструктура и окружающая среда».Существующая ветровая электростанция и недавно построенная фотоэлектрическая установка, софинансируемая, в свою очередь, WFOŚiGW, будут обеспечивать энергией электролизер номинальной мощностью 5 МВт. Полученный таким образом зеленый водород будет питать когенерационную систему, подключенную к адсорбционному охладителю, что позволит поставлять энергию в виде тепла или холода на завод по производству медицинских изделий «Промет-Пласт». Излишки топлива будут храниться под высоким давлением, что позволит системе работать в условиях отсутствия возобновляемых источников энергии или использовать водород для других целей.

Где h3PL и где h3DE?

SBB Energy предпринимает другие инициативы, связанные с водородной экономикой, участвует в нескольких водородных проектах и ​​готовит технологическую концепцию для нужд различных заказчиков, как на региональном уровне, так и отдельных компаний. Одним из них был проект по использованию водорода для производства и поставки зеленой энергии для отопления города Пщина. - К сожалению, из-за отсутствия финансирования она закончилась неудачей, - говорит вице-президент Жмуда.

Заявка на софинансирование данного проекта из государственных средств подана в Министерство развития и технологий в рамках конкурса IPCEI. В общей сложности на конкурс было представлено 36 проектов, но Министерство квалифицировало только 9 проектов, реализованных: PGNiG, Orlen, Lotos, Synthos, Polenergia, Tauron, PESA из Быдгоща и Экоэнергетика в Зелена-Гуре.

Софинансирование от IPCEI не будет предоставлено таким проектам, как: ArcelorMittala, Grupa Azoty, KGHM, Węglokoks, PKP Energetyka, Veolia Południe, Enertrag или ARPe-Vehicle – дочерняя компания Agencja Rozwoju Przemysłu.

Сложно говорить о каких-либо преференциях для государственных компаний, хотя стоит отметить, что в список не попал ни один проект, предложенный иностранными компаниями, работающими в Польше.

Пока выполняются небольшие проекты. В Великопольше ПАК получил софинансирование из пула малых проектов Инновационного фонда на строительство электролизера мощностью 5 МВт. Несколько проектов также претендуют на кредиты Национального фонда охраны окружающей среды и водного хозяйства.

Читайте также: Польские компании пытаются бороться с водородом

Мы все еще бледны по сравнению с инвестициями, запланированными в Западной Европе.В Германии в механизм IPCEI было подано более 230 проектов, а 62 проекта прошли квалификацию, на что из государственных и федеральных фондов будет выделено 8 млрд евро. Это инфраструктурные, энергетические, транспортные и промышленные проекты. Поддержка будет оказана всем крупным производителям стали: ArcelorMittal, Stahl Holding Saar, Salzgitter Stahl и Thyssenkrupp Steel. Водородные транспортные сети будут расширены примерно на 1,7 тысячи километров. км газопроводов. Федеральное министерство транспорта финансирует 12 проектов в сфере мобильности. Они касаются разработки и производства систем топливных элементов и транспортных средств - от легковых и грузовых автомобилей до коммунальной техники.В список также вошли проекты, связанные с морским транспортом, авиацией и химической промышленностью.

RWE включен в проект GET h3, который включает в себя электролизер мощностью 300 МВт в Лингене и 135-километровый водородный трубопровод к сталелитейному заводу Salzgitter. Еще один проект RWE заключается в производстве водорода на морских фермах и доставке его по трубопроводам в материковую Германию.

Всего благодаря IPCEI в Германии планируется построить 2 ГВт электролизеров. Эта помощь должна быть одобрена Европейской комиссией.

.

электролизеров Cummins питают первую в своем роде водородную заправочную станцию ​​

Топливные элементы не новы. Фактически, первое упоминание о водородных топливных элементах появилось в 1838 году в декабрьском выпуске журнала The London and Industry Magazines Exhaust Profit and Journal of Science . Почти 200 лет спустя мир признает топливные элементы ключевой технологией для открытия углеродно-нейтрального будущего.

Вот что это такое, как они работают и в какие два типа топливных элементов инвестирует компания Cummins.

Что такое топливный элемент простым способом?

Как и аккумуляторы, топливные элементы являются преобразователями энергии: они используют электрохимическую реакцию, чтобы использовать химическую энергию, хранящуюся в источнике топлива, и преобразовывать ее в электричество. В отличие от батарей, которые содержат постоянный запас энергии, топливные элементы не нуждаются в зарядке. Пока топливо непрерывно подается в топливный элемент, производится электричество, вода и тепло.

Как работает топливный элемент?

Топливный элемент состоит из двух электродов и электролитической мембраны. Электроды называются катодом и анодом, между ними находится электролитическая мембрана. В этой системе происходит ряд химических реакций для отделения электронов от молекул топлива для создания энергии.

Топливо, обычно водород, подается к аноду с одной стороны, а кислород — к катоду с другой. Молекулы водородного топлива в аноде разделяются на протоны и электроны, которые следуют разными путями к катоду.Электроны проходят через электрическую цепь, создавая поток электричества. Протоны проходят через электролит к катоду. Попав на катод, молекулы кислорода реагируют с электронами и протонами, образуя молекулы воды.

Топливный элемент — это чистый источник энергии, единственными побочными продуктами которого являются электричество (мощность), тепло и вода. Один только топливный элемент производит лишь небольшое количество энергии; следовательно, несколько топливных элементов могут быть сложены вместе, чтобы сформировать стопку топливных элементов.Объединяясь в пакеты, мощность топливных элементов может варьироваться в широких пределах, от нескольких киловатт до установок на многие мегаватты.

Какое топливо можно использовать в топливных элементах?

Топливные элементы

обеспечивают гибкость в выборе типа используемого топлива. В то время как водород является наиболее распространенным источником топлива для топливных элементов (отсюда и общее название, водородные топливные элементы), богатые водородом виды топлива, такие как природный газ и аммиак, также являются жизнеспособным источником топлива.

Hydro: При производстве с использованием возобновляемой энергии, такой как солнечная, ветровая и гидроэнергия, водород полностью обезуглероживается и не производит выбросов. Водородные топливные элементы (то есть топливные элементы, работающие на водороде) вырабатывают энергию, тепло и воду и не выделяют в воздух углекислый газ или другие загрязняющие вещества.

Газ: Благодаря непрерывному производству зеленого водорода природный газ в настоящее время является наиболее широко используемым топливом для питания топливных элементов.В этом случае топливные элементы не полностью исключают выбросы, но обеспечивают значительно более низкие выбросы выхлопных газов, чем другие виды топлива, такие как сырая нефть и уголь.

Аммиак: Аммиак чаще всего используется в качестве удобрения в сельском хозяйстве. Однако в последние годы несколько компаний работают с восточным зеленым аммиаком. Зеленый аммиак производится из водорода, полученного в результате электролиза воды с использованием альтернативной энергии, что делает его еще одним вариантом низкоуглеродного топлива.

В какие топливные элементы инвестирует компания Cummins?

В настоящее время разрабатывается шесть типов топливных элементов, каждый из которых в первую очередь имеет тип используемого электролита. Каждый тип топливных элементов имеет свои преимущества, ограничения и возможности использования. Из этих шести компания Cummins увидела потенциал в двух типах топливных элементов — топливных элементах с протонообменной мембраной и оксидных топливных элементах — и инвестировала в разработку и применение технологий.

Топливные элементы с протонообменной мембраной (PEM): Этот тип топливных элементов, известный как топливные элементы с полимерной мембраной, использует полимерный электролит и работает при более низких температурах, около 80 градусов Цельсия. Топливные элементы Z MEM больше подходят для мобильных и аварийных источников энергии из-за их высокой удельной мощности и возможности быстрого запуска и остановки.

Оксидные топливные элементы (SOMC): SoFC используют твердый непористый керамический компаунд в качестве электролита и работают при высоких температурах до 1000 градусов Цельсия.Этот тип топливных элементов наиболее подходит для стационарного применения, поскольку он отличается высокой эффективностью и гибкостью в отношении расхода топлива. Кроме того, отработанное тепло можно использовать и повторно использовать для повышения общей эффективности системы.

Зачем покупать топливные элементы?

Мы уже являемся лидерами в производстве электролизеров PEM, которые производят зеленый водород путем электролиза, и мы работаем над тем, чтобы сделать зеленый водород более доступным для будущего использования в топливных элементах.Компания Cummins получила грант Министерства энергетики США на разработку систем ТОТЭ, благодаря чему наши топливные элементы успешно поддерживают работу электромобилей с аккумуляторным приводом.

Топливные элементы могут предсказать начало Cummins, но мы не тратим время на выяснение того, как развивать нашу технологию для создания безуглеродного будущего.

.90 000 зеленой энергии для производства зеленого водорода - студенты создают исследовательский стенд

Пломеньская студенческая исследовательская группа только начинает работу над созданием исследовательского стенда, который будет состоять из электролизера, фотогальванических панелей и топливного элемента. Члены кружка хотят использовать солнечную энергию для производства водорода, затем хранить его и использовать для производства энергии.

SKN Płomień работает на Факультете механики и энергетики Вроцлавского университета науки и техники.В прошлом месяце студенты получили финансирование от городской программы FAST. Благодаря этому вскоре начнут работу по созданию электролизера, т.е. устройства, преобразующего воду в водород и кислород. Он состоит из отрицательно заряженного электрода, то есть катода, и положительно заряженного электрода, анода. Применение к ним тока создает взаимосвязь элементов, из которых состоит вода. Таким образом можно получить водород, т.е. газ, считающийся топливом будущего – в том числе потому что его теплотворная способность на килограмм является самой высокой среди всех элементов (в несколько раз выше, чем у угля или бензина), а при его сгорании образуется только вода (поэтому он не выделяет никаких загрязняющих веществ).

Электролиз воды – процесс, известный с конца 19 века, существенным недостатком которого является необходимость использования электричества. Следовательно, процесс электролиза выгоден только в том случае, если у вас есть источник дешевой электроэнергии.

Студенты СКН Пломень намерены использовать фотогальванические панели в качестве источника энергии. - Вероятно, мы разместим их в одном из зданий главного кампуса университета, - говорит Щепан Владыка , президент клуба. - Благодаря этому мы получим зеленую энергию, а в результате – зеленый водород, то есть не загрязняющий окружающую среду.

Студенты потратят много времени на анализ эффективности процесса электролиза. Свой стенд они оснастят рядом датчиков - в т.ч. температура и давление воды. - Также будет интеллектуальный насос подачи воды. Мы намерены контролировать напряжение, температуру и количество подаваемой воды, чтобы найти оптимальные параметры для всего процесса, — добавляет Владыка.

Последним элементом всей станции будет топливный элемент, т.е. система, производящая электроэнергию из водорода и кислорода.- Мы хотим показать, что такая система, состоящая из фотоэлектрических панелей, электролизера и топливного элемента, в будущем может стать одним из способов обеспечения домохозяйств электричеством, - поясняет студент. - В настоящее время излишки энергии из возобновляемых источников подаются в электросеть, а когда энергия нужна, а панели ее не производят, например, из-за ночи, то электроэнергия берется из сети со скидкой. Альтернативой такому решению может стать производство водорода, его хранение и последующее использование для производства электроэнергии.Конечно, пока это дело будущего, потому что такой метод связан с несколькими сложными вопросами, такими как сжатие водорода, чтобы он не занимал слишком много места, или безопасность его хранения. Однако сегодня мы уже ездим на водородных автомобилях, поэтому следующим шагом может стать использование водорода в наших домах.

Студенты также устанавливают сотрудничество с компанией Symkom, специализирующейся на внедрении программного обеспечения Ansys, используемого для компьютерного моделирования и численного анализа.Члены SKN Płomień хотят использовать их для анализа, который поможет повысить эффективность производства водорода.

Над проектом будут работать десять членов клуба - восемь студентов механико-энергетического факультета и двое - электротехнического факультета. Финансирование по программе FAST позволит им профинансировать работы по строительству электролизера, на остальные элементы они намерены получить финансирование по внутриуниверситетской грантовой программе и по конкурсу Минобрнауки.

Студентам будут помогать аспирант Доминик Белецкий , который занимается вопросом электролиза воды в рамках своей диссертации, а также руководитель клуба Dr. Eng. Пшемыслав Шульц и проф. Галина Павляк-Кручек .

Люсина Рог

.

Смотрите также