Первый запуск водяного теплого пола


Как включить теплый пол правильно – инструкция по шагам

На чтение 10 мин. Обновлено

Тёплые водяные полы сегодня набирают популярность, особенно в частных строениях, так как они более экономичны, в отличие от электрических устройств, в которых источником нагрева выступает кабель. Но не все знают, как правильно осуществлять первое включение системы, а это важное и ответственное мероприятие.

При неправильно проведённом заполнении тёплого водного пола, возникнут неполадки в работе, вследствие чего потребуется произвести демонтаж конструкции, что приведет как минимум к дополнительным расходам.

Если пол уложен на лаги или настильным способом, то после заполнении труб его можно сразу включать. При монтаже греющего устройства с использованием стяжки, первый запуск более сложный и продолжительный.

Запуск водяного тёплого пола

Водяной тёплый пол — многослойное устройство. Поэтому, даже процесс ввода в эксплуатацию, который кажется простым, имеет свои особенности. Прежде чем приступить к монтажу конструкции, необходимо понимать, как правильно заполнить и включить тёплый водяной пол, а также нужно ознакомиться с инструкцией по пользованию.

Первый запуск включает в себя: наполнение, промывку, слив, регулировку системы, прогревание и сушку стяжки. Принцип действия зависит от используемого теплоносителя и типа отопления, он бывает закрытым и открытым. Кроме того, важным моментом при пуске пола является обеспечение циркуляции жидкости и удалении воздушных пробок из контура.

Чтобы правильно запустить в работу устройство — водяной тёплый пол, выходной коллектор должен иметь специальный кран. Опрессовочный аппарат, необходимый для проверки пола, можно арендовать.

Но если в трубопровод закачивается вода, а не антифриз, то лучше иметь собственное приспособление. Использовать аппарат придется часто, так как рекомендовано проводить замену теплоносителя ежегодно, а следовательно проводить и тестирование системы.

Какой теплоноситель выбрать

По трубам водяного тёплого пола циркулирует жидкий теплоноситель. Он бывает нескольких видов:

  1. Обычная вода — самый дешёвый вариант. Она экологически безопасна и не оказывает вреда человеку. Хорошо переносит и отдаёт тепло. В случаи протечки, её объём легко восполнить.

Однако, у воды есть и минусы, но они не значительные:

  • содержит соли, которые оседают внутри труб, а это снижает теплоотдачу, но так как в контуре движется одна и та же жидкость, то количество солей не большое;
  • в ней находится кислород, он приводит к коррозии, но его не много;
  • она замерзает, при этом увеличивается в объёме, и может навредить трубопроводу;
  • её необходимо заменять раз в год, но на это не требуется финансовых вложений.
  1. Антифризы — изготавливаются на основе этиленгликоля и пропилен-гликоля с добавлением присадок, они снижают активность жидкости. Главный их плюс — практически не замерзают зимой, или только при очень низких температурах.

Среди минусов — высокая стоимость, особенно жидкости на основе пропилен – гликоля. Если говорить об этиленгликоле, то он текуч, ядовит, вызывает образование коррозии и плохо переносит перегрев.

  1. Дистиллированная вода — неплохой вариант, но лишь при постоянном проживании в квартире, или если пол включается только летом, так как быстро замерзает.

Подводя итог, можно сделать вывод, что лучший вариант — заполнить систему «тёплый пол» водопроводной водой. Это дёшево, безопасно, и кроме того вода отличный теплоноситель.

Заполняем водой систему тёплых полов

 Прежде, чем первый раз запустить тёплый водяной пол, магистраль следует заполнить. На способ наполнения влияет тип системы и вид теплоносителя. В нашем случае, мы будем использовать самый популярный вид — воду.

Если применяется вода, то необходимо ежегодно производить ее замену, то есть заправлять новую. Трубопровод водяного пола перед каждым включением требуется промывать. В магистраль подаётся вода, ее нужно сливать до тех пор пока не будет выходить чистая. 

Есть два способа заполнения водой тёплого пола. Рассмотрим пошагово, как заполнять водой контур тёплого пола закрытого типа через коллектор:

  1. Открываются все краны, такие как:
  2. коллекторные вентили;
  3. закрывающие краны на трубах;
  4. трёхходовой клапан распределительного узла;
  5. все отводчики воздуха.

Если в трёхходовом клапане имеется термостатическая головка, то необходимо установить самое большое значение. А в случаи отсутствия головки вентиль выкручивается до придела.

Следует подождать, пока весь воздух не выйдет из магистрали.

К сведению! Открывание кранов будет сопровождаться шумом движущейся воды по трубам и выходящего воздуха. 

  • Включается циркуляционный насос. Воздухоотвод снова запускается, будет слышен шум от проходящего воздуха через него. Насос должен поработать минуты 3 — этого достаточно, чтобы вышла основная масса воздуха.
  • Закрываются все краны, и только один остаётся открытым. Это требуется для концентрации насоса на одном контуре, чтобы все остатки воздуха вышли из него.
  • Когда из данной петли воздух вышел, открывается следующий контур, а этот закрывается. Такое действие проводится со всеми вентилями.
  • После того, как воздух выпущен из всей системы, отключается насос.
  • Откручиваются краны на всех контурах (входного и выходного плана), вода качается пока последние остатки воздуха не выйдут.

По завершению данной процедуры, система греющего пола заполнена, и можно приступать к её настройке и включению.

Другой вариант — заполнение магистрали открытого типа. Это устройство оснащено специальным баком, с помощью него можно добавлять теплоноситель при испарении. А также внизу есть сливочный кран, через который происходит заполнение пола от источника водоснабжения при помощи шланга.

Однако сначала пол следует наполнять через коллекторный кран, который подключается шлангом к трубам. Принцип действия такой же, как при использовании закрытой конструкции. Технология отличается отсутствием насоса, а воздух выводится под давлением от системы водоснабжения.

Правила опрессовки тёплых полов

Опрессовка — тестирование отопительной системы на работоспособность и наличие течи под давлением. Данная процедура проводится сразу после того, как закончено заполнение контуров водяного пола, и до момента укладки бетонной стяжки.

К сведению! Так как опрессовка проводится без стяжки, то трубы под действием давления, при плохой фиксации, могут распрямиться и выскочить из пазов. Поэтому, требуется надёжное их крепление, возможно установить дополнительные крепежи на время опрессовки.

Процесс опрессовки имеет свои особенности, это зависит от материала, из которого изготовлены трубы:

  1. При наличии металлопластикового контура — производится подача холодной воды, и включается давление 6 Бар. Испытание проводится 24 часа, и если за это время напор не упал, то процедура считается успешной.
  2. При использовании трубопровода из сшитого полиэтилена — проверка проводится либо при давлении 6 Бар, либо равном двум рабочим. Кроме того, при понижении напора, давление три раза поднимается каждые 30 минут. Последний раза контур заполняется водой и оставляется на сутки. Испытание считается успешным, если по истечению данного времени, давление понизилось не больше чем в 1,5 раз.

Кроме проведения теста под давлением, можно проверить работу пола максимальной температурой (85 градусов). Время испытания — не более получаса. Если за этот период не обнаружено течи и не выделяется пар, то устройство удачно выдержало данную проверку.

Есть ещё один способ опрессовки — «сухой», то есть в магистраль закачивается воздух. Этот метод не совсем надёжный, поэтому для устройств под стяжку не рекомендован.

Если при тестировании тёплого водяного пола обнаружены неполадки, то после их устранения, проверку следует повторить.

Запуск

После опрессовки, и устранения возможных дефектов, можно заливать конструкцию стяжкой из бетона. Запуск тёплого гидропола производится только когда полностью просохла бетонная стяжка.

Поднимать температуру воды надо медленно, на протяжении нескольких суток. Устанавливается начальный показатель 20 градусов, и каждый день осуществляется подъём ещё на 10, пока не будет достигнут рабочий уровень. Только затем, можно начинать монтаж полового покрытия.

Помимо этого, на скорость подъёма температуры влияет площадь обогреваемого помещения. При небольшом размере и тонком слое бетона, процесс выхода на требуемый уровень можно ускорить.

Важно! Однако не стоит торопиться запускать водяной пол. Ведь если прогрев будет быстрым и неравномерным, то есть риск появления трещин на стяжке и  поломки конструкции.

Настройка и регулирование

После заправки пола, надо установить трёхходовой клапан в наиболее минимальное положение. Если коллекторный узел оборудован расходомерами, то следует провести распределение потоков теплоносителя. Это нужно делать, когда работает циркулирующий насос.

К сведению! Тёплый водяной пол обладает гидросопротивлением, поэтому насос может иметь не ту мощность, которую заявил производитель. В связи с этим, полученные результаты необходимо немного занизить.

При сборке распределительного узла своими руками, для его управления, на нём должны быть установлены регулировочные вентили. При первой настройке учитывается размер каждой петли. Контуры, которые прогреваются слабее, включаются сильнее, а чрезмерно горячие наоборот следует отключить.

Проведя регулировку надо подождать 2 — 3 часа, это время необходимо для нагревания бетонной поверхности. Данную процедуру нужно проводить до тех пор, пока бетонная поверхность не будет прогреваться равномерно.

Регулирование температуры движущейся жидкости по трубам производится при помощи терморегулятора. Механическое приспособление считается наиболее выгодным, однако самые точные — электронные, марок Schneider и Salus.

Но если позволяют финансовые возможности, то профессионалы советуют использовать программируемые модели терморегуляторов. Стоят они дорого, но способны обеспечить комфортные условия без особого труда  и вмешательства человека.

Слив теплоносителя

Если возникла необходимость выключить систему, то сделать это не сложно. Но прежде, чем отключать её, следует выполнить ряд действий. Кроме того, нужно учитывать, что на процесс слива теплоносителя влияет способ подключения пола — от центрального отопления или от котла.

Если монтажные работы по возведению тёплых водяных полов проведены правильно, то в конструкции отсутствует нижняя точка, а также кран в этой части. Поэтому, чтобы слить воду, которая поступает от центрального отопления потребуется компрессор.

Его следует подключить к входному клапану распределительного узла. Для этого, снимается воздухоотводчик с вентиля, предназначенного для запуска воды. На его место устанавливается переходник, и к нему подсоединяется компрессор. А к крану слива на обратку подключается шланг, он выводится в ёмкость или канализацию.

Затем, все запорные вентили закрываются, кроме крана одной петли. Компрессор включается, и под действием давления  происходит выход жидкости. Выключать его следует только тогда, когда пойдёт воздушно-капельная взвесь. Вентиля на этой петле закрываются, и открываются на другой, а компрессор опять включается. Данное действие повторяется со всеми контурами, таким образом вода сливается со всех петель.

После слива, внутри трубопровода остаются капельки жидкости. А так как, протяжённость магистрали не редко имеет большие размеры, то общий её объём будет не маленький. Поэтому, рекомендовано повторить данную процедуру слива повторно через некоторое время.

Важно! Если коллектор заводского производства, то он оснащён устройствами, которые не дают воде идти обратно (обратка). И в случаи ошибки, и подключения компрессора к ней, не произойдёт спускания жидкости, а вот распределительный узел может сломаться.

Если тёплый водяной пол работает от котельного оборудования, то для слива теплоносителя используются те же краны, но только на патрубках котла. Узнайте как работает водяной теплый пол: принцип действия, устройство разных типов.

Как видите, запустить правильно водяной тёплый пол под силу каждому. Хотя если у вас нет опыта в данной работе, лучше пригласить профессионалов. Ведь от этого зависит эффективное функционирование системы и комфорт в доме.

Видео инструкции

Согласно исследованию, на Земле возрастом 1,5 миллиарда лет вода была повсюду, но не на одном континенте.

Как выглядела Земля 3,2 миллиарда лет назад? Новые данные свидетельствуют о том, что планета была покрыта огромным океаном и совсем не имела континентов.

Континенты появились позже, когда тектонические плиты вытолкнули вверх огромные скалистые массивы суши, прорвав морские поверхности, как недавно сообщили ученые.

Они нашли подсказки об этом древнем водном мире, сохранившиеся на куске древнего морского дна, который сейчас находится в глубинке на северо-западе Австралии.

Связано: Временная шкала фото: Как образовалась Земля

Около 4,5 миллиарда лет назад высокоскоростные столкновения между пылью и космическими породами сформировали начало нашей планеты: пузырящаяся расплавленная сфера магмы это было тысячи миль глубиной. Земля остывала, когда вращалась; в конце концов, через 1000–1 миллион лет остывающая магма сформировала первые минеральные кристаллы в земной коре.

Между тем, первая вода Земли могла быть принесена сюда ледяными кометами из-за пределов Солнечной системы, или она могла прибыть в виде пыли из облака частиц, породившего Солнце и вращающиеся вокруг него планеты примерно во время Формирование Земли.

Когда Земля была горячим магматическим океаном, водяной пар и газы уходили в атмосферу. «Затем, когда условия стали достаточно прохладными, из атмосферы пошел дождь», - сказал ведущий автор исследования Бенджамин Джонсон, доцент кафедры геологических и атмосферных наук в Университете штата Айова.

«Мы не можем точно сказать, каков источник воды, исходя из нашей работы, но мы предполагаем, что независимо от источника, он присутствовал, когда океан магмы все еще был вокруг», - сказал Джонсон Live Science в электронном письме.

Эта базальтовая подушка выстилала морское дно примерно 3,2 миллиарда лет назад. (Изображение предоставлено Бенджамином Джонсоном)

В новом исследовании Джонсон и соавтор Босвелл Винг, доцент геологических наук в Университете Колорадо в Боулдере, обратились к уникальному ландшафту Panorama в австралийской глубинке. Его скалистые пейзажи сохраняют гидротермальную систему, датируемую 3,2 миллиарда лет назад, «и фиксируют всю океаническую кору от поверхности до теплового двигателя, который управлял циркуляцией», - сказал Джонсон.

На этом скалистом морском дне сохранились различные версии или изотопы кислорода ; Со временем взаимосвязь между этими изотопами может помочь ученым расшифровать изменения температуры древнего океана и глобального климата.

Однако ученые обнаружили нечто неожиданное, проанализировав более 100 образцов донных отложений. Они обнаружили, что 3,2 миллиарда лет назад океаны содержали больше кислорода-18, чем кислорода-16 (последний более распространен в современном океане).Их компьютерные модели показали, что в глобальном масштабе континентальные суши выщелачивают кислород-18 из океанов. В отсутствие континентов океаны переносили бы больше кислорода-18. И соотношение между этими двумя изотопами кислорода намекало на то, что в то время континентов вообще не было, как показало исследование.

«Это значение отличается от современного океана, что наиболее легко объясняется отсутствием эмерджентной континентальной коры», - сказал Джонсон в электронном письме.

Другие исследователи ранее выдвигали идею о том, что когда-то Земля была покрыта океаном, сказал Джонсон.Однако нет единого мнения о том, какая часть этой коры была видна над уровнем моря. Это новое открытие «устанавливает фактические геохимические ограничения на присутствие суши над уровнем моря», - пояснил он.

Перспектива древнего водного мира Земля также предлагает новый взгляд на другой интригующий вопрос: где появились самые ранние формы жизни на планете и как они развивались, пишут исследователи в своем исследовании.

«Есть два основных лагеря происхождения жизни: гидротермальные источники и пруды на суше», - сказал Джонсон.«Если наша работа точна, это означает, что количество сред на суше, в которых может возникать и развиваться жизнь, было действительно небольшим или отсутствовало примерно до 3,2 миллиарда лет назад».

Результаты были опубликованы в Интернете сегодня (2 марта) в журнале Nature Geoscience .

Примечание редактора. Заголовок этой статьи был обновлен 3 марта, чтобы скорректировать возраст Земли, свободной от континентов; в то время как свидетельства в этом исследовании датируются более чем 3 миллиардами лет назад, Земля в то время была только 1.5 миллиардов лет, а не 3 миллиарда лет.

Первоначально опубликовано на Live Science .

ПРЕДЛОЖЕНИЕ: Сэкономьте минимум 53% с нашей последней скидкой на журнал!

Благодаря впечатляющим вырезанным иллюстрациям, показывающим, как все устроено, и умопомрачительным фотографиям самых вдохновляющих зрелищ в мире, How It Works представляет собой вершину увлекательного, фактического развлечения для основной аудитории, стремящейся быть в курсе последних технологий и самых впечатляющих явлений планета и за ее пределами.Написанный и представленный в стиле, который делает даже самые сложные предметы интересными и легкими для понимания, How It Works нравится читателям любого возраста.
Посмотреть сделку

.

Как работает вода | HowStuffWorks

Водородная связь между молекулами воды, о которой мы говорили в первом разделе, является причиной двух уникальных свойств воды: когезия и адгезии . Сплоченность означает, что вода очень легко прилипает к себе. Адгезия означает, что вода также очень хорошо прилипает к другим предметам, поэтому она растекается тонкой пленкой на определенных поверхностях, например на стекле. Когда вода вступает в контакт с этими поверхностями, силы сцепления превышают силы сцепления.Вместо того, чтобы слипаться в клубок, он распространяется.

Вода также имеет высокий уровень поверхностного натяжения . Это означает, что молекулы на поверхности воды не окружены одинаковыми молекулами со всех сторон, поэтому их притягивает только когезия других молекул глубоко внутри. Эти молекулы прочно сцеплены друг с другом, но слабо прилипают к другой среде. Одним из примеров этого является то, как вода скапливается на восковых поверхностях, таких как листья или вощеные автомобили.Поверхностное натяжение делает эти капли воды круглыми, поэтому они покрывают как можно меньшую площадь поверхности.

Объявление

Капиллярное действие также является результатом поверхностного натяжения. Как мы уже упоминали, это происходит у растений, когда они «всасывают» воду. Вода прилипает к внутренней части трубок растения, но поверхностное натяжение пытается ее сгладить. Это заставляет воду подниматься и снова связываться с собой, и этот процесс продолжается до тех пор, пока не накопится достаточно воды, чтобы гравитация начала тянуть ее обратно вниз.

Водородные связи воды также являются причиной того, что ее твердая форма, лед , может плавать в своей жидкой форме. Лед менее плотен, чем вода, потому что молекулы воды образуют кристаллические структуры при температуре ниже нуля (32 градуса по Фаренгейту или 0 градусов Цельсия). Тепловые свойства воды также связаны с ее водородными связями. Вода имеет очень высокую удельную теплоемкость , то есть количество тепла на единицу массы, необходимое для повышения ее температуры на один градус Цельсия.Энергия, необходимая для повышения температуры воды на один градус Цельсия, составляет 4,2 джоуля на грамм. Вода также имеет высокую теплоту испарения , что означает, что она может принимать много тепла без значительного повышения температуры. Это играет огромную роль в климате, потому что океанам нужно много времени, чтобы нагреться.

Вода часто известна как универсальный растворитель , что означает, что в ней растворяются многие вещества. Вещества, растворяющиеся в воде, гидрофильные .Это означает, что они так же сильны или сильнее, чем силы сцепления воды. Соль и сахар полярны, как вода, поэтому они очень хорошо растворяются в ней. Вещества, не растворяющиеся в воде, гидрофобны . Отсюда поговорка «масло и вода не смешиваются». Растворимость воды - вот почему вода, которую мы используем, редко бывает чистой; в нем обычно растворено несколько минералов.

Присутствие этих минералов составляет разницу между жесткой водой и мягкой водой .Жесткая вода обычно содержит много кальция и магния, но также может содержать металлы. Мыло плохо пенится в жесткой воде, но жесткая вода обычно не опасна. Он также может вызывать отложения известкового налета в трубах, водонагревателях и туалетах.

Некоторые из последних споров о свойствах воды заключаются в том, как ведет себя лед, когда он тает. Некоторые ученые утверждают, что он выглядит примерно так же, как и в твердом состоянии, за исключением того, что некоторые из его водородных связей разорваны. Другие утверждают, что это совершенно новая структура.Так что, несмотря на всю важность, мы до сих пор не совсем понимаем воду.

Для получения дополнительной информации о воде и связанных темах ознакомьтесь с ссылками на следующей странице.

.

Отопление | процесс или система

Отопление , процесс и система повышения температуры замкнутого пространства с основной целью обеспечения комфорта жильцов. Регулируя температуру окружающей среды, отопление также служит для поддержания структурных, механических и электрических систем здания.

В термоэлектрической генерирующей системе источник тепла - обычно работающий на угле, нефти или газе - используется внутри котла для преобразования воды в пар высокого давления.Пар расширяется и вращает лопатки турбины, которая вращает якорь генератора, вырабатывая электроэнергию. Конденсатор преобразует оставшийся пар в воду, а насос возвращает воду в бойлер. Encyclopædia Britannica, Inc.

Историческое развитие

Самым ранним способом обогрева помещений был открытый огонь. Такой источник, наряду с соответствующими методами, такими как камины, чугунные печи и современные обогреватели, работающие на газе или электричестве, известен как прямое отопление, потому что преобразование энергии в тепло происходит на обогреваемом участке.Более распространенная форма отопления в наше время известна как центральное, или косвенное, отопление. Он заключается в преобразовании энергии в тепло в источнике вне, отдельно от обогреваемого объекта или объектов или расположенных внутри него; Полученное тепло передается на объект через текучую среду, такую ​​как воздух, вода или пар.

За исключением древних греков и римлян, большинство культур полагалось на методы прямого нагрева. Древесина была первым топливом, которое использовалось, хотя в местах, где требовалось только умеренное тепло, таких как Китай, Япония и Средиземноморье, использовался древесный уголь (сделанный из дерева), потому что он производил гораздо меньше дыма.Дымоход, или дымоход, который сначала был простым отверстием в центре крыши, а затем поднимался прямо из камина, появился в Европе в 13 веке и эффективно устранял дым и испарения огня из жилого помещения. Закрытые печи, по-видимому, впервые использовались китайцами около 600 г. до н. Э. И в конечном итоге распространились по России в северную Европу, а оттуда в Америку, где Бенджамин Франклин в 1744 году изобрел усовершенствованную конструкцию, известную как печь Франклина. Печи расходуют гораздо меньше тепла, чем камины, потому что тепло огня поглощается стенками печи, которые нагревают воздух в комнате, а не пропускают вверх по дымоходу в виде горячих дымовых газов.

Центральное отопление, кажется, было изобретено в Древней Греции, но именно римляне стали величайшими инженерами-теплотехниками древнего мира с их системой гипокауста. Во многих римских зданиях полы из мозаичной плитки поддерживались колоннами внизу, которые создавали воздушные пространства или каналы. На участке, расположенном в центре всех отапливаемых комнат, сжигали древесный уголь, хворост и, в Британии, уголь, и горячие газы распространялись под полом, согревая их в процессе. Однако система гипокауста исчезла с упадком Римской империи, и центральное отопление не было восстановлено до 1500 лет спустя.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Центральное отопление снова стало использоваться в начале 19 века, когда промышленная революция вызвала увеличение размеров зданий для промышленности, жилых помещений и сферы услуг. Использование пара в качестве источника энергии предложило новый способ обогрева фабрик и заводов, когда пар передавался по трубам. Котлы, работающие на угле, подавали горячий пар в помещения с помощью стоячих радиаторов.Паровое отопление долгое время преобладало на североамериканском континенте из-за очень холодных зим. Преимущества горячей воды, которая имеет более низкую температуру поверхности и более мягкий общий эффект, чем пар, начали осознаваться примерно в 1830 году. В системах центрального отопления двадцатого века обычно используется теплый воздух или горячая вода для передачи тепла. В большинстве недавно построенных американских домов и офисов теплый воздух вытеснил пар, но в Великобритании и на большей части европейского континента горячая вода заменила пар в качестве предпочтительного метода отопления; канальный теплый воздух там никогда не был популярен.Большинство других стран приняли американские или европейские предпочтения в методах отопления.

Системы центрального отопления и топливо

Важнейшими компонентами системы центрального отопления являются устройства, в которых можно сжигать топливо для получения тепла; среда, транспортируемая в трубах или каналах для передачи тепла в обогреваемые помещения; и излучающее устройство в этих пространствах для выделения тепла либо конвекцией, либо излучением, либо обоими способами. Принудительное распределение воздуха перемещает нагретый воздух в пространство с помощью системы воздуховодов и вентиляторов, которые создают перепады давления.Лучистое отопление, напротив, включает прямую передачу тепла от излучателя к стенам, потолку или полу замкнутого пространства независимо от температуры воздуха между ними; Излучаемое тепло устанавливает цикл конвекции во всем пространстве, создавая в нем равномерно нагретую температуру.

Температура воздуха и влияние солнечного излучения, относительной влажности и конвекции - все это влияет на конструкцию системы отопления. Не менее важным соображением является объем физической активности, который ожидается в определенных условиях.В рабочей атмосфере, в которой напряженная деятельность является нормой, человеческое тело выделяет больше тепла. В качестве компенсации температура воздуха поддерживается на более низком уровне, что позволяет рассеивать лишнее тепло тела. Верхний предел температуры 24 ° C (75 ° F) подходит для сидячих рабочих и домашних жилых помещений, а нижний предел температуры в 13 ° C (55 ° F) подходит для людей, выполняющих тяжелую ручную работу.

При сгорании топлива углерод и водород реагируют с атмосферным кислородом с выделением тепла, которое передается из камеры сгорания в среду, состоящую из воздуха или воды.Оборудование устроено так, что нагретая среда постоянно удаляется и заменяется охлаждающей системой - , т. Е. путем циркуляции. Если среда является воздухом, оборудование называется топкой, а если среда - водой, бойлером или водонагревателем. Термин «бойлер» более правильно относится к сосуду, в котором производится пар, а «водонагреватель» - к сосуду, в котором вода нагревается и циркулирует ниже точки кипения.

Природный газ и мазут являются основными видами топлива, используемыми для производства тепла в котлах и печах.Они не требуют труда, за исключением периодической очистки, и работают с ними с помощью полностью автоматических горелок, которые могут регулироваться термостатом. В отличие от своих предшественников, угля и кокса, после использования не остается остаточной золы для утилизации. Природный газ вообще не требует хранения, а нефть перекачивается в резервуары для хранения, которые могут быть расположены на некотором расстоянии от отопительного оборудования. Рост объемов отопления на природном газе был тесно связан с увеличением доступности газа из сетей подземных трубопроводов, надежностью подземных поставок и чистотой сжигания газа.Этот рост также связан с популярностью систем теплого воздуха, к которым особенно хорошо подходит газовое топливо и на которые приходится большая часть природного газа, потребляемого в жилых домах. Газ легче сжигать и контролировать, чем нефть, пользователю не нужен резервуар для хранения и он платит за топливо после того, как он его использовал, а доставка топлива не зависит от капризов моторизованного транспорта. Газовые горелки обычно проще, чем те, которые требуются для жидкого топлива, и имеют мало движущихся частей. Поскольку при сжигании газа выделяются ядовитые выхлопные газы, воздух из обогревателей должен выводиться наружу.В местах, недоступных для трубопроводов природного газа, сжиженный нефтяной газ (пропан или бутан) доставляется в специальных автоцистернах и хранится под давлением в доме до тех пор, пока он не будет готов к использованию так же, как природный газ. Нефтяное и газовое топливо во многом обязано своим удобством автоматической работе их теплоцентралей. Эта автоматизация основана в первую очередь на термостате, устройстве, которое, когда температура в помещении упадет до заданного значения, активирует печь или котел до тех пор, пока потребность в тепле не будет удовлетворена.Автоматические отопительные установки настолько тщательно защищены термостатами, что предвидятся и контролируются почти все мыслимые обстоятельства, которые могут быть опасными.

.

Какую часть океана мы исследовали?

Оишимая Сен Наг, 27 августа 2018 г., журнал Environment

Большая часть океана не исследована.

6. Какая часть океана еще не исследована?

Несмотря на то, что люди исследовали и нанесли на карту большие части планеты Марс и Луны в космическом пространстве, до сих пор исследована лишь небольшая часть Мирового океана.Говорят, что людям удалось исследовать только около 5% дна океана. Остальные 95% океана до сих пор остаются загадкой. Почему исследование морских глубин является такой сложной задачей, которую некоторые эксперты считают более сложной, чем исследование космических объектов? Фактически, больше людей ступили на поверхность Луны, чем нырнули в глубины Марианской впадины в Тихом океане, одной из самых глубоких частей Мирового океана.

5.Почему так важно исследование океанов?

Океаны занимают 70% общей площади поверхности Земли и более 90% жизненного пространства на планете. Фактически, все виды наземной фауны являются исключением в мире океанических существ. Океаны влияют на климат и погодные явления на суше, и большое количество океанической флоры и фауны являются важными источниками пищи для людей. Океаны позволяют перемещаться между континентами и странами мира, и около половины населения мира проживает в прибрежной зоне.Таким образом, понимание Мирового океана чрезвычайно важно для нас. Изменения в океанах Земли будут напрямую влиять на нашу жизнь на суше, и поэтому нам необходимо обнаруживать такие изменения как можно раньше. Помимо расширения наших знаний об океанах для нашей безопасности и экономических выгод, исследование дна океана также будет утолить любопытный человеческий разум и нашу жажду познания неизведанного.

4.Тайны глубокого моря

Ученые и исследователи считают, что в глубинах Мирового океана еще предстоит разгадать множество загадок. Например, в океане расположены величественные подводные водопады, высота которых часто превышает высоту водопада Анхель 3212 футов, самого высокого водопада на Земле. Кроме того, на дне океана есть озера с глубиной более 300 футов. Считается, что эти озера являются хозяевами видов, которых нет ни в какой другой части океана.Морское дно также сильно волнисто в ряде мест с горными хребтами и долинами. Подсчитано, что на морском дне есть долины, более глубокие, чем в Гранд-Каньоне. Существует также невероятное разнообразие морских существ, которые еще предстоит обнаружить и классифицировать. Самое удивительное в морской жизни - это невероятное биоразнообразие океанической экосистемы. Об этом свидетельствует тот факт, что 297 новых видов морских существ были обнаружены на единственной колонне вулканической породы в океане.

3. Проблемы, стоящие перед исследованием глубокого моря

Исследование морских глубин - это очень сложный вид деятельности, требующий сложного оборудования, больших бюджетов, смелого и опытного персонала и разрешений от правительств на национальном и международном уровнях.

Глубоководные водолазы сталкиваются с рядом угроз, таких как неблагоприятные физиологические последствия высокого давления воды, угрозы со стороны странных и опасных морских существ, отказ водолазного оборудования и т. Д. Температуры на дне океана также сильно различаются. В одном месте может быть почти замерзание, в то время как наличие гидротермальных источников в других местах может поднять температуру океана до 400 градусов по Цельсию.Видимость часто плохая на больших глубинах океана и преобладает кромешная тьма. Такие качества морских глубин подвергают экстремальному стрессу как дайверов, так и глубоководные аппараты. Даже небольшая трещина в корпусе подводного аппарата может привести к тому, что он треснет, как бумажный стаканчик, на большой глубине в океане.

2.Какая часть океана исследована до сих пор?

Некоторые эксперты считают, что утверждение о том, что только 5% дна океана было нанесено на карту, а 95% дна не нанесено на карту, не совсем верно. Фактически, все дно океана было нанесено на карту с максимальным разрешением примерно 5 км, что означает, что были нанесены на карту все элементы дна океана, размер которых превышает 5 км. Однако верно то, что полное и подробное картирование дна океана все еще отсутствует.В случае Венеры 98% поверхности планеты нанесено на карту с разрешением около 100 метров. Однако только от 10% до 15% дна океана были нанесены на карту с этим разрешением.

В отличие от наземных объектов, которые наносятся на карту с помощью радара, передаваемого со спутников, океанское дно необходимо измерять другими способами.Океанская вода блокирует радиоволны, что делает измерения неточными. Однако можно измерить высоту морской поверхности с помощью спутников. Используя сложные математические вычисления, если можно вычесть изменения высоты поверхности океана из-за волн и приливов, можно точно измерить падения и неровности поверхности океана, на которые влияют ландшафты на дне океана. Например, в местах с большими горами на морском дне небольшое увеличение местной силы тяжести из-за массы горы будет притягивать морскую воду, образуя небольшой бугорок над объектом.Это увеличит высоту поверхности моря в таких местах.

1. Технологии будущего для исследования океанов

В настоящее время необходим переход от спутниковой технологии к гидролокатору для более детального картирования дна океана.Современные системы обнаружения сонаров могут создавать карты дна океана с разрешением около 100 метров. С помощью этой технологии было нанесено на карту от 10% до 15% дна океана. Однако, чтобы обнаруживать объекты и особенности на морском дне с еще большим разрешением, гидролокатор должен выполнять обнаружение с более близкого расстояния к морскому дну. В этом отношении могут быть полезны подводные аппараты или буксируемые инструменты.

.

Смотрите также