Не греет теплый пол как найти причину


Не греет электрический теплый пол

Не редко случается, что исправно проработав один, два сезона электрический теплый пол внезапно перестает греть. Если он у вас выполнял роль дополнительного отопления, то с этим еще можно как-то повременить.

Вызвать специалиста, дождаться ремонтных работ. А вот когда, это единственный и основной источник отопления в доме, можно ли найти причину поломки своими руками и устранить ее самостоятельно?

В большинстве случаев можно, но многое зависит от места повреждения и причины. Вот основные три:
  • неисправность терморегулятора
  • выход из строя температурного датчика
  • повреждение кабеля

Ошибки при монтаже

Если теплый пол у вас все же греет, но плохо, слишком часто выключается, так и не набрав нужной температуры, проблема изначально может заключаться в неправильном расположении температурного датчика.

Получается, что еще на стадии монтажа, вы его разместили слишком близко к греющему кабелю. Либо он сместился в момент укладки напольного покрытия.

Когда датчик согласно инструкции заложен в гофре, можно попытаться решить проблему, втолкнув или вытащив его из гофротрубки на 5см.

Если такие проблемы с недостаточным прогревом появились совсем недавно, вспомните, в каком месте заложен этот индикатор. Вполне возможно, что именно на него кто-то передвинул и поставил какую-нибудь мебель или положил коврик.

Из-за этого, датчик стал прогревать пол в этом месте быстрее, и соответственно отключаться раньше обычного.

Еще слабый прогрев может быть вызван пониженным напряжением в сети у вас в квартире. Вольтметром сделайте замеры.

Какое напряжение по ГОСТу должно быть у вас в доме читайте в статье ”Что такое реле напряжения и всегда ли оно нужно в квартире”.

Выход из строя терморегулятора

Когда электрический теплый пол вообще не включается, поиск неисправности нужно начинать с терморегулятора. Для начала вытащите его из посадочного места, чтобы были видны все клеммы.

Если у вас электронный тип, при его демонтаже никогда не надавливайте пальцами на экран, иначе он может треснуть.

Первым делом мультиметром проверьте, а приходит ли на терморегулятор вообще 220В? Может быть дело и не в полу, а все проблемы в питающем кабеле.

Используйте именно мультиметр или вольтметр, а не простой индикатор, который показывает просто наличие фазы. Фаза то может и приходить, а вот ноля не будет – отсюда и не работоспособность всей системы.

На большинстве термостатов все клеммы производители подписывают и маркируют:

  • L и N – место куда подключается питание (фаза и ноль соответственно)

В определенных моделях рекомендуется строго соблюдать “полярность” и не путать ноль с фазой. Почему?

Для этого достаточно разобрать регулятор и тогда вы увидите, что ноль напрямую через дорожку подается на греющий кабель. Фаза же разрывается через реле. Например, именно так сделано в модели RTC 70.26.

То есть, если вы перепутаете ”полярность”, то фаза всегда будет дежурить у вас на теплом полу. Даже, когда встроенный выключатель отключен! Будьте внимательны.

  • L1 и N1 – отходящая нагрузка, греющий кабель или мат
  • Sensor – термодатчик

Конечно может быть и другое обозначение клемм:

Если напряжение на клеммах питания есть и оно в норме, то обязательно перепроверьте надежность контактов в остальных зажимах.

Бывает такое, что со временем контакт ослабляется и тонкий проводок просто выпадает и перестает контачить. В итоге программное обеспечение теплого пола выдает это как ошибку – ”Авария. Обрыв датчика теплого пола.”

Вроде бы, коснулись терморегулятора или включили-выключили общий автомат и все заработало. Начинаете искать проблему где-то глубоко, а она на поверхности – плохой контакт в клеммной колодке.

Повреждение и проверка датчика температуры

Когда проблем с контактами нет, нужно проверить работоспособность самого регулятора и датчика. Как это сделать, не ломая пол?

Для этого на те клеммы, куда подключается кабель теплого пола, подсоедините обычную лампочку с патроном. Подаете напряжение и начинаете выкручивать регулятор изменяя температуру.

При исправности прибора и достижении определенной (комнатной или ниже) температуры, произойдет щелчок и лампочка загорится.

Затем берете обычный фен и начинаете прогревать то место пола, где установлен температурный датчик.

Если он действительно исправный, то через пару минут (зависит от толщины стяжки), датчик должен сработать и лампочка отключится. Это означает, что причина скорее всего в повреждении самого греющего кабеля и контролирующая аппаратура здесь не причем.

Но иногда повреждаются и сами приборы. Если при включении теплых полов индикатор начинает моргать и тухнет, после чего кабель естественно не греет, то возможно у вас в схеме ”пересох” конденсатор.

Такое часто происходит при длительной эксплуатации теплого пола от 5 лет и более. Когда моргает зеленый светодиод, то это может свидетельствовать об обрыве датчика.

Встречается и обратная ситуация. Пол прогревается, а терморегулятор не выключается. То есть, постоянно горит красный индикатор. Как проверить, что не исправно?

Отсоединяете от клемм провода терморезистора и мультиметром замеряете его сопротивление, сравнивая с паспортными данными. Причем характеристики у разных производителей могут существенно отличаться. Начиная от 6кОм и заканчивая 100кОм и более.

Если получилось очень высокое или бесконечное сопротивление – то датчик не исправен. Терморегулятор думает, что пол холодный и соответственно греет его до максимума. То же самое происходит и при обрыве проводов идущих до датчика.

Еще многих пугают, что если нарастить длину проводов до термостата, то тем самым резко изменится общее сопротивление, и прибор будет работать не корректно.

Подумайте сами – сопротивление таких терморезисторов составляет несколько кОм. А вы, нарастив пару лишних метров, добавите всего несколько Ом. Погрешность при настройке температуры практически не поменяется.

Защита от короткого замыкания

Никаких предохранителей в терморегуляторах обычно не ставится, не ищите их внутри. Фактически функцию предохранителя в системах электрических теплых полов, должен выполнять автоматический выключатель + УЗО или дифф.автомат у вас в щитке.

В некоторых моделях регуляторов (например RTC 70), стоит встроенный выключатель. Им можно вручную, не бегая к электрощитку, отключить теплые полы.

Многие ошибочно думают, что именно через него проходит весь ток на греющий кабель. Это не так. Этот переключатель отвечает только за подачу питания на плату, отсюда и такой его малый рабочий ток – 6А.

Настройка работы теплого пола с неисправным датчиком

Электронные модели в отличие от механических, сами должны помогать пользователям в определении неисправностей. Например, при поломке датчика температуры, у них на экране должны будут высвечиваться не типичные значения или ошибка E5.

Чтобы дальше продолжать пользоваться теплыми полами, несмотря на неисправность, некоторые модели это позволяют, необходимо проделать следующее:

  • отключаете от клемм провода на датчик
  • терморегулятор переводите в режим таймера

Некоторые модели это делают автоматически, в других видах нужно зажать кнопки вверх-вниз одновременно.

  • на экране высвечивается номер программы
  • перебирая кнопками вверх-вниз можно подобрать комфортную температуру согласно программы

В механических марках, например DeviReg 130, такой способ тоже применим. Вытаскиваете провода от датчика и выкручиваете регулировочное колесико между положениями 3-4.

В этом режиме можно будет добиться оптимальной комфортной температуры теплых полов. Правда, включены они у вас будут постоянно.

А если явного обрыва нет, а мультиметр даже показывает какие-то значения, как узнать, что терморезистор неисправен? Нужно сравнить его паспортные данные с теми, что определяются фактически при замерах.

Например, заводские данные термостата – 15кОм при t=25С.

А вот, что показывает тестер при замерах: 

Здесь конечно нужно учитывать температурный коэффициент. Если он негативный, то при повышении t от 25С сопротивление будет падать. При более низкой температуре, сопротивление увеличивается.

То есть, будет выше 15кОм. Вот результат замера такого же исправного датчика при t уже 20С:
С качественными терморегуляторами, температурными датчиками и другими комплектующими ведущих фирм, а также с текущими ценами по теплым полам на сегодняшний день, можно ознакомиться здесь.

Повреждение греющего кабеля и нагревательного мата

Если вы проверили датчик, терморегулятор, все контакты и замечаний по их работе нет, а пол по-прежнему не греет, то остается искать повреждение в самом греющем кабеле.

Явное короткое замыкание диагностировать можно простым мультиметром. А вот чтобы установить его точное место, без специальных дорогостоящих приборов, увы не обойтись.

В начале диагностики тестером проверяете сопротивление между жил кабеля. Оно должно быть в пределах заводских данных – от 11 до 700 Ом, в зависимости от длины.

Поэтому всегда сохраняйте паспортную документацию на теплые полы. Вклеивайте туда шильдики с кабельной продукции, записывайте показания изначальных сопротивления изоляции и сопротивления жил.

Потом при возникновении проблем, легко можно будет определить, что за кабель уложен, его длину, заводское сопротивление. Также не мешает сделать фотографию или зарисовку зон укладки.

Если короткого замыкания между жил нет, значит дело в плохой изоляции, идем дальше. Проверяете сопротивление, опять же пока тестером, между жилой и экраном.

Здесь показания должны стремиться к бесконечности – или отображается единичка с левой стороны на экране токоизмерительных клещей. При нулевых показаниях все понятно – жила где-то явно замкнута на экран.

А вот если мультиметр показывает сопротивление в несколько сотен Ом или даже кОм, тогда подключаете мегаомметр на 2500В и подаете повышенное напряжение между оплеткой и нагревательной жилой.

И вот если у вас при этом сопротивление изоляции будет падать до ноля, то это и говорит, что кабель пробит и нужно искать место повреждения.

Причем при меньшем напряжении в 500В или 1000В этого можно и не узнать.

Для новых нагревательных кабелей от качественных производителей (Devi, Veria и др.) сопротивление должно быть не ниже 1 ГОм при напряжении 2,5кВ.

Например, нагревательные маты производители на заводе проверяют напряжением 3кВ с погружением в воду.

Прожиг кабеля и генератор сигналов

Чтобы найти точное место неисправности, нужно иметь специализированные приборы представляющие из себя:

  • трансформатор для прожига
  • генератор сигналов
  • эл.магнитный приемник сигналов
  • тепловизор

В домашних условиях никто таких приборов не имеет, поэтому придется вызывать специалиста. Как происходит поиск таких неисправностей можно ознакомиться в подробном видео с реального объекта:

Порядок такой:

  • прожигается место слабой изоляции

Для этого подается повышенное напряжение в точку пробоя (до 10кВ!). При одновременном напряжении на жилах до 350В, создается розжиг сварочной дуги.

Эта дуга, как бы наваривает углеродную дорожку в месте соединения проводников, током до 3А и образует замкнутый контур.

  • генератором подается сигнал в кабель
  • эл.магнитным датчиком, выступающим в качестве приемника, находится примерное место замыкания. Все это без вскрытия плитки или другого напольного покрытия.
  • тепловизором просматривается вся площадь более внимательно и визуально устанавливается точное место КЗ. Там, где делали прожиг, будет завышенная температура.

С нагревательными матами поиск проще, так как они расположены близко к поверхности. А вот с кабелем гораздо сложнее, особенно под толстой стяжкой. Она сильно ослабляет сигнал, и поиск КЗ может занять гораздо больше времени.

Если у вас еще на стадии проверки мультиметром, показало замыкание двух жил между собой, то здесь ничего и прожигать не нужно. Сразу подключаете на них генератор и ищите точку.

Обрыв жилы греющего кабеля

Ну и еще одна распространенная ситуация – обрыв жилы. Это одна из самых неприятных аварий. Кабель прожечь невозможно, замыкания никакого нет и даже тепловизор здесь бесполезен.

Чаще всего такое повреждение происходит в муфтах – начальной, соединительной или концевой.

Там нагревательные жилки очень тонкие, и нередко именно в этом месте, почему-то умудряются сделать поворот трассы.

При явном обрыве и мультиметр и мегаомметр покажут сопротивление между жил близкое к бесконечности. Но если какой-то неустойчивый контакт все еще остался, то тестер может показать вполне хорошие данные, например 200-300 Ом.

Вот только при включении под напряжение 220В никакого полноценного нагрева не будет, а рабочий ток составит максимум несколько миллиампер, вместо положенной нагрузки в несколько Ампер.

Кабель в итоге будет прогреваться еле-еле, и ни о каком нормальном отоплении естественно речи уже быть не может.

Зачастую даже прожиг здесь бесполезен. И все что остается – это разобрать самые подозрительные места, в первую очередь те плитки, под которыми установлены муфты.

Теоретически можно попробовать применить методы поиска проводки под штукатуркой. 

В соединительных муфтах кабель не будет полностью экранирован. И подав на жилу напряжение, можно попытаться засечь сигнал, там где пропадает фаза, т.е. как раз в месте обрыва. Но очень многое будет зависеть от глубины залегания и специфики повреждения.

Статьи по теме

Теплый пол с подогревом Часто задаваемые вопросы


Может ли пол стать слишком горячим?

Излучающий пол с подогревом обеспечивает температуру в помещении, очень близкую к идеальной: около 75 F на уровне пола, снижаясь до 68 F на уровне глаз, а затем до 61 F на потолке. По данным ассоциации Radiant Panel Association, пол с лучистым обогревом обычно кажется «нейтральным», с температурой поверхности, как правило, ниже нормальной температуры тела, хотя общее ощущение комфорта. Только в очень холодные дни, когда система лучистого отопления задействована на максимальную мощность, пол действительно будет «теплым».

Может ли трубопровод течь в гидравлической системе?

Утечки не вызывают беспокойства при правильной установке системы. Ожидаемый срок службы трубок из PEX составляет более 100 лет, и все трубки тщательно проверяются перед отправкой с завода-изготовителя.

Если у меня теплый пол, нужна ли мне отдельная система для кондиционирования воздуха?

Хотя некоторые системы теплого пола могут охлаждаться за счет циркуляции холодной воды по трубам, для большинства домов потребуется отдельная система для обеспечения охлаждения.Причина в том, что отопление в идеале осуществляется с нуля. Охлаждение лучше всего осуществлять через отдельную систему кондиционирования воздуха с воздуховодами, расположенными под потолком. Лучистое охлаждение также не удаляет влагу из воздуха, что может быть недостатком в жарком климате. Кроме того, это может привести к конденсации влаги на прохладной поверхности бетонного пола.

Охлаждение дома с системой водяного теплого пола

В доме с системой лучистого теплого пола обычно устанавливается отдельная система для охлаждения.

Причина проста: в идеале отопление осуществляется с нуля.

Теплый пол обеспечивает температуру в помещении, очень близкую к идеальной: 75 ° на уровне пола, снижение до 68 ° на уровне глаз, затем до 61 ° на потолке.

Охлаждение, напротив, лучше всего доставлять через воздуховоды, расположенные под потолком комнаты. Попытка выполнить обе функции с одной системой сделает одну или другую менее эффективной.

Отдельная система, обеспечивающая только охлаждение, будет не такой дорогой, как комбинированная система отопления / охлаждения.

Итог по стоимости:

В доме, нуждающемся в системе охлаждения, чистая стоимость получения лучистого теплого пола будет равна стоимости системы лучистого теплого пола, за вычетом суммы, сэкономленной за счет отсутствия нагревательного элемента в вашей системе принудительного воздушного охлаждения.

Можно ли зонировать теплый пол?

Да. Фактически, большинство гидравлических систем имеют элементы управления зонированием, которые могут регулировать уровень тепла, подаваемого в конкретное помещение или область пола, либо путем регулирования объема потока воды через каждый контур трубопровода, температуры воды, длительности импульсов потока. , или комбинация всех трех.Электрические системы обычно управляются с помощью программируемых термостатов с двойным датчиком, которые объединяют входные данные от датчика температуры пола с термостатом комнатной температуры.

Недавняя инновация от Uponor - это беспроводная система зонирования с климат-контролем, которая позволяет вам отдельно контролировать каждую комнату в доме или здании. Разработанный для использования с водяным лучистым отоплением, беспроводное управление также устраняет необходимость прокладывать провода термостата через стены, что может значительно сократить время установки.

Что такое зоны теплого пола?

Большинство установленных систем лучистого теплого пола имеют несколько зон.

Зонирование контролирует подачу тепла в определенную область пола, контролируя поток воды (где температура воды остается постоянной, но время, в течение которого она находится в определенной области, меняется), либо температуру воды. или их комбинацию.

Зоны плана этажа могут иметь разные потребности в обогреве в зависимости от того, для чего используется комната, как часто она используется, и даже от того, какое напольное покрытие используется.

Квалифицированный подрядчик по обогреву полов возьмется за решение вопросов «зонирования» на этапе проектирования проекта.

Сколько стоит установка излучающего тепла в пол?

Затраты на оборудование и установку могут широко варьироваться в зависимости от таких факторов, как тип системы (электрическая или водяная), размер обогреваемой площади, тип пола, требования к зонированию и контролю, а также стоимость труд, работа. Лучшая стратегия при сравнении затрат - это получить оценки от нескольких установщиков лучистого отопления в вашем районе.Всего:

  • Установка новых бетонных полов обычно дешевле, чем переоборудование или демонтаж и замена существующего пола.
  • Системы
  • Hydronic обычно имеют более высокие начальные затраты, потому что вам нужно покупать больше оборудования, включая бойлер и насос. Но если вы намереваетесь отапливать большую площадь или весь дом, использование гидравлических систем в долгосрочной перспективе может оказаться более рентабельным.
  • С другой стороны, электрическое лучистое тепло часто более рентабельно для обогрева небольших площадей, в зависимости от
.

Основы системы отопления и охлаждения: советы и рекомендации

Как только воздух нагревается или охлаждается у источника тепла / холода, его необходимо распределить по различным комнатам вашего дома. Этого можно добиться с помощью систем с принудительной подачей воздуха, гравитации или излучения, описанных ниже.

Системы нагнетания воздуха

Система принудительной подачи воздуха распределяет тепло, производимое печью, или холод, производимый центральным кондиционером, через вентилятор с электрическим приводом, называемый нагнетателем, который нагнетает воздух через систему металлических каналов в комнаты в вашем доме.По мере того, как теплый воздух из печи втекает в комнаты, более холодный воздух в комнатах стекает через другой набор каналов, называемый системой возврата холодного воздуха, в печь для обогрева. Эта система регулируется: вы можете увеличивать или уменьшать количество воздуха, проходящего через ваш дом. В центральных системах кондиционирования воздуха используется та же система принудительной подачи воздуха, включая вентилятор, для распределения холодного воздуха по комнатам и для возврата более теплого воздуха для охлаждения.

Объявление

Проблемы с системами принудительной подачи воздуха обычно связаны с неисправностью вентилятора.Воздуходувка также может быть шумной и добавляет стоимость электроэнергии к стоимости топочного топлива. Но поскольку в ней используется воздуходувка, система принудительной подачи воздуха является эффективным способом отвода тепла или охлаждения воздуха по всему дому.

Гравитационные системы

Гравитационные системы основаны на принципе подъема горячего воздуха и опускания холодного воздуха. Следовательно, гравитационные системы нельзя использовать для распределения холодного воздуха из кондиционера. В гравитационной системе печь располагается рядом с полом или под ним.Нагретый воздух поднимается по воздуховодам и попадает в пол по всему дому. Если печь расположена на первом этаже дома, регистры тепла обычно располагаются высоко на стенах, поскольку регистры всегда должны быть выше печи. Нагретый воздух поднимается к потолку. По мере того, как воздух охлаждается, он опускается, входит в каналы возвратного воздуха и возвращается в печь для повторного нагрева.

Другой основной системой распределения для отопления является лучистая система.Источником тепла обычно является горячая вода, которая нагревается печью и циркулирует по трубам, встроенным в стену, пол или потолок.

Радиант Системс

Излучающие системы работают, обогревая стены, пол или потолок комнат или, чаще, обогревая радиаторы в комнатах. Затем эти предметы нагревают воздух в комнате. В некоторых системах используются электрические нагревательные панели для выработки тепла, которое излучается в комнаты. Как и гравитационные настенные обогреватели, эти панели обычно устанавливают в теплом климате или там, где электричество относительно недорогое.Излучательные системы нельзя использовать для распределения холодного воздуха от кондиционера.

Радиаторы и конвекторы, наиболее распространенные средства распределения лучистого тепла в старых домах, используются в системах водяного отопления. Эти системы могут зависеть от силы тяжести или от циркуляционного насоса для циркуляции нагретой воды от котла к радиаторам или конвекторам. Система, в которой используется насос или циркуляционный насос, называется гидравлической системой.

Современные системы лучистого отопления часто встраиваются в дома, построенные на фундаменте из бетонных плит.Под поверхностью бетонной плиты прокладывается сеть водопроводных труб. Когда бетон нагревается трубами, он нагревает воздух, соприкасающийся с поверхностью пола. Плита не должна сильно нагреваться; в конечном итоге он будет контактировать с воздухом по всему дому и нагревать его.

Системы Radiant, особенно когда они зависят от силы тяжести, подвержены ряду проблем. Трубы, используемые для распределения нагретой воды, могут забиться минеральными отложениями или наклониться под неправильным углом.Бойлер, в котором вода нагревается у источника тепла, тоже может выйти из строя. В новых домах системы горячего водоснабжения устанавливаются редко.

В следующем разделе вы узнаете, как термостат и другие элементы управления используются для поддержания микроклимата в помещении, создаваемого вашими системами отопления и охлаждения.

.

Как работают радиаторы | HowStuffWorks

Тепло может передаваться тремя способами: конвекцией, излучением и теплопроводностью. Проводимость - это способ передачи тепла в твердом теле и, следовательно, способ его передачи в радиаторе. Проводимость возникает, когда два объекта с разной температурой вступают в контакт друг с другом. В точке встречи двух объектов более быстро движущиеся молекулы более теплого объекта врезаются в более медленные молекулы более холодного объекта.Когда это происходит, более быстрые молекулы от более теплого объекта передают энергию более медленным молекулам, которые, в свою очередь, нагревают более холодный объект. Этот процесс известен как теплопроводность , - это то, как радиаторы отводят тепло от процессора компьютера.

Радиаторы обычно изготавливаются из металла, который служит проводником тепла, отводящим тепло от процессора. Однако у каждого типа металла есть свои плюсы и минусы. Во-первых, каждый металл имеет разный уровень теплопроводности.Чем выше теплопроводность металла, тем эффективнее он передает тепло.

Объявление

Одним из наиболее распространенных металлов, используемых в радиаторах, является алюминий. Алюминий имеет теплопроводность 235 Вт на Кельвин на метр (Вт / м · К). (Число теплопроводности, в данном случае 235, относится к способности металла проводить тепло. Проще говоря, чем выше показатель теплопроводности металла, тем больше тепла может проводить металл.) Алюминий также дешев в производстве и имеет небольшой вес. Когда прикреплен радиатор, его вес создает определенную нагрузку на материнскую плату, для которой материнская плата предназначена. Тем не менее, легкий алюминиевый корпус полезен тем, что добавляет небольшой вес и нагрузку на материнскую плату.

Медь - один из лучших и наиболее распространенных материалов, используемых для изготовления радиаторов. Медь имеет очень высокую теплопроводность - 400 Вт / мК. Однако он тяжелее алюминия и дороже.Но для операционных систем, требующих значительного отвода тепла, часто используется медь.

Так куда же девается тепло, когда оно отводится от процессора через радиатор? Вентилятор внутри компьютера перемещает воздух через радиатор и выходит из компьютера. У большинства компьютеров также есть дополнительный вентилятор, установленный непосредственно над радиатором, чтобы помочь должным образом охладить процессор. Радиаторы с этими дополнительными вентиляторами называются активными радиаторами , а радиаторы с одним вентилятором называются пассивными радиаторами .Наиболее распространенным вентилятором является корпусный вентилятор , который забирает холодный воздух снаружи компьютера и продувает его через компьютер, вытесняя горячий воздух сзади.

.

Как мы узнаем, что климат меняется?

Краткий ответ:

Ученые давно наблюдают за Землей. Они используют спутники НАСА и другие инструменты для сбора разнообразной информации о суше, атмосфере, океане и льдах Земли. Эта информация говорит нам, что климат Земли становится теплее.

Почему становится теплее Земля?

Мы не можем измерить температуру Земли напрямую, но у нас есть много информации от метеостанций, океанских буев и инструментов дистанционного зондирования.Информация позволяет нам видеть изменения климата. Предоставлено: NASA / JPL-Caltech

.

Избыточные парниковые газы в нашей атмосфере - основная причина того, что Земля становится теплее. Парниковые газы, такие как двуокись углерода (CO 2 ) и метан, задерживают солнечное тепло в атмосфере Земли.

Наличие парниковых газов в нашей атмосфере - это нормально. Они помогают сохранять на Земле достаточно тепла, чтобы на ней можно было жить. Но слишком много парниковых газов может вызвать слишком сильное потепление.

Сжигание ископаемого топлива, такого как уголь и нефть, увеличивает количество CO 2 в нашем воздухе.Это происходит потому, что в процессе горения углерод соединяется с кислородом воздуха с образованием CO 2 .

Важно, чтобы мы контролировали уровни CO 2 , потому что слишком большое количество CO 2 может вызвать слишком сильное потепление на Земле. В нескольких миссиях НАСА есть инструменты, изучающие CO 2 в атмосфере.

Почему важно, что климат Земли меняется?

За миллионы лет климат Земли многократно нагрелся и охладился.Однако сегодня планета нагревается намного быстрее, чем за всю историю человечества.

Глобальная температура воздуха у поверхности Земли за последнее столетие повысилась примерно на 2 градуса по Фаренгейту. Фактически, последние пять лет были самыми теплыми пятью годами за всю историю человечества.

Полтора градуса может показаться не таким уж большим. Однако это изменение может иметь большое влияние на здоровье растений и животных Земли.

Откуда мы знаем, каким был климат Земли давным-давно?

Ледяное ядро.Предоставлено: Центр космических полетов имени Годдарда НАСА / Людовик Брукер

.

Мы знаем, каким был климат Земли в прошлом, изучая вещи, которые существовали уже давно. Например, ученые могут изучить, каким был климат Земли сотни лет назад, изучая внутренности деревьев, которые были живы с тех пор.

Но если ученые хотят знать, каким был климат Земли сотни тысяч или миллионы лет назад, они изучают кернов отложений и кернов льда .Керны наносов поступают со дна озер или со дна океана. Ледяные керны пробуриваются на глубине - иногда на несколько миль - ниже поверхности льда в таких местах, как Антарктида.

Просверленный ледяной стержень выглядит как то, что вы получите, если погрузите соломинку для питья в густой напиток и вытащите ее пальцем через конец соломинки.

Слои в керне льда заморожены. Эти слои льда дают представление о каждом году истории Земли, начиная с того времени, когда формировался самый глубокий слой.Лед содержит пузырьки воздуха каждого года. Ученые анализируют пузырьки в каждом слое, чтобы узнать, сколько CO 2 они содержат.

Каждый слой ледяного ядра рассказывает ученым что-то о прошлом Земли. Предоставлено: NASA / JPL-Caltech

.

Ученые также могут использовать ледяные керны, чтобы узнать о температурах каждого года. Когда снег накапливается на растущем леднике, температура воздуха влияет на молекулы воды во льду.

Ученые, использующие деревья, ледяные керны, отложения озер и океанов для изучения климата Земли, называются палеоклиматологами .Они смотрят на все эти источники информации и сравнивают свои выводы, чтобы убедиться, что они совпадают. Если да, то их выводы, скорее всего, считаются правдой. Если результаты не совпадают, ученые проводят дополнительные исследования и собирают больше информации.

В случае истории климата Земли результаты многих различных исследований совпадают.

Как такое небольшое потепление может вызвать такое сильное таяние?

Для нагрева воды требуется много энергии. Однако океаны действительно поглощают тепло, и они становятся теплее.Эта более теплая вода вызывает таяние морского льда в Арктике.

Информация со спутников Земли НАСА показывает нам, что каждое лето некоторые арктические льды тают и сжимаются, и к сентябрю становится меньше всего. Затем, когда приходит зима, лед снова растет. Но с 1979 года сентябрьский лед становится все меньше и меньше, все тоньше и тоньше. Итак, даже небольшое потепление может иметь огромный эффект в течение нескольких лет.

Арктический морской лед Каждый сентябрь 1979-2018 гг.

На этой анимации показаны спутниковые наблюдения за арктическим морским льдом каждый сентябрь с 1979 по 2018 год.С 1979 года площадь льда становится все меньше и меньше. Предоставлено: НАСА Студия научной визуализации

.

Ледники - это еще одна форма тающего, сокращающегося льда. Ледники подобны замерзшим рекам. Они текут по суше, как реки, только гораздо медленнее. Более высокие температуры заставляют их течь быстрее. Многие из них текут в сторону океана, разбиваясь на огромные куски, которые падают в воду.

Что говорит нам уровень моря об изменении климата?

Все больше ледников тают в океане, и уровень мирового океана повышается.Повышение уровня моря - еще один ключ к разгадке потепления климата Земли. Но таяние льда - не единственная причина повышения уровня моря. По мере того как океан становится теплее, вода фактически расширяется! Ученые заметили, что за последние 100 лет уровень моря поднялся на 7 дюймов.

Чтобы узнать больше о том, откуда мы знаем, что климат Земли меняется, посетите страницу «Доказательства» на веб-сайте NASA Climate.

.

Смотрите также