Мощность через ток


Калькулятор перевода силы тока в мощность (амперы в киловатты)

Мощность - энергия, потребляемая нагрузкой от источника в единицу времени (скорость потребления, измеряется в Ватт). Сила тока - количество энергии, прошедшей за величину времени (скорость прохождения, измеряется в амперах).

Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения.

Чтобы перевести Ватты в Амперы, понадобится формула: I = P / U, где I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтах.

Если сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз. Корень из трех приблизительно равен 1,73. Чтобы перевести ток в мощность (узнать, сколько в 1 ампере ватт), надо применить формулу:

P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.

Таблица перевода Ампер – Ватт:

220 В

380 В

 

100 Ватт

0,45

0,15

Ампер

200 Ватт

0,91

0,3

Ампер

300 Ватт

1,36

0,46

Ампер

400 Ватт

1,82

0,6

Ампер

500 Ватт

2,27

0,76

Ампер

600 Ватт

2,73

0,91

Ампер

700 Ватт

3,18

1,06

Ампер

800 Ватт

3,64

1,22

Ампер

900 Ватт

4,09

1,37

Ампер

1000 Ватт

4,55

1,52

Ампер

Допустим, что вы живете в квартире со старым электросчетчиком, и у вас установлена автоматическая пробка на 16 Ампер. Чтобы определить, какую мощность «потянет» пробка, нужно перевести Амперы в киловатты. Для удобства расчетов принимаем cosФ за единицу. Напряжение нам известно – 220 В, ток тоже, давайте переведем: 220*16*1=3520 Ватт или 3,5 киловатта – ровно столько вы можете подключить единовременно.

Сложнее дело обстоит с электродвигателями, у них есть такой показатель как коэффициент мощности. Если полная мощность двигателя 5,5 киловатт, то потребляемая активная мощность 5,5*0,87= 4,7 киловатта.  Стоит отметить, что при выборе автомата и кабеля для электродвигателя нужно учитывать полную мощность, поэтому нужно брать ток нагрузки, который указан в паспорте к двигателю. И также важно учитывать пусковые токи, так как они значительно превышают рабочий ток двигателя.

Мощность электрического тока - Основы электроники

Обычно электрический ток сравнивают с течением жид­кости по трубке, а напряжение или разность потенциалов — с разностью уровней жидкости.

В этом случае поток воды, падающий сверху вниз, несет с собой определенное количество энергии. В усло­виях свободного падения эта энергия растрачивается беспо­лезно для человека. Если же направить падающий поток во­ды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу.

Работа, производимая потоком воды в течение определен­ного промежутка времени, например, в течение одной секун­ды, будет тем больше, чем с большей высоты падает поток и чем больше масса падающей воды.

Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. В каждую данную секунду времени будет совершаться тем больше рабо­ты, чем больше разность потенциалов и чем большее количе­ство электричества ежесекундно проходит через поперечное сечение цепи.

Мощность электрического тока это количество работы, совершаемой за одну секунду времени, или скорость совершения работы.

Количество электричества, проходящего через поперечное сечение цепи в течение одной секунды, есть не что иное, как сила тока в цепи. Следовательно, мощность электрического тока будет прямо пропорциональна разности потенциалов (на­пряжению) и силе тока в цепи.

Для измерения мощности электрического тока принята еди­ница, называемая ватт (Вт).

Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В.

Для вычисления мощности постоянного тока в ваттах нуж­но силу тока в амперах умножить на напряжение в вольтах.

Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы

P = I*U. (1)

Воспользуемся этой формулой для решения числового при­мера. Требуется определить, какая мощность электрического тока необходима для накала нити радиолампы, если напряжение накала равно 4 в, а ток накала 75 мА

Определим мощность электрического тока, поглощаемую нитью лампы:

Р= 0,075 А*4 В = 0,3 Вт.

Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.

В этом случае мы воспользуемся знакомым нам соотноше­нием из закона Ома:

U=IR

и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U.

Тогда формула (1) примет вид:

P = I*U =I*IR

или

Р = I2*R. (2)

Например, требуется узнать, какая мощность теряется в реостате сопротивлением в 5 Ом, если через него проходит ток, силой 0,5 А. Пользуясь формулой (2), найдем:

P= I2*R = (0,5)2*5 =0,25*5 = 1,25 Вт.

Наконец, мощность электрического тока может быть вычислена и в том слу­чае, когда известны напряжение и сопротивление, а сила тока неизвестна. Для этого вместо силы тока I в формулу (1) подставляется известное из закона Ома отношение U/R и тогда формула (1) приобретает следующий вид:

Р = I*U=U2/R (3)

Например, при 2,5 В падения напряжения на реостате сопро­тивлением в 5 Ом поглощаемая реостатом мощность будет равна:

Р = U2/R=(2,5)2/5=1,25 Вт

Таким образом, для вычисления мощности требуется знать любые две из величин, входящих в формулу закона Ома.

Мощность электрического тока равна работе электрического тока, производимой в течение одной секунды.

P = A/t

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

формула, онлайн расчет, выбор автомата

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока. Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

I = P/(U*cos φ),

а для трехфазной сети: I = P/(1,73*U*cos φ),

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) - 60 А;
  • электроплита (10 кВт) - 50 А;
  • варочная панель (8 кВт) - 40 А;
  • электроводонагреватель проточный (6 кВт) - 30 А;
  • посудомоечная машина (2,5 кВт) - 12,5 А;
  • стиральная машина (2,5 кВт) - 12,5 А;
  • джакузи (2,5 кВт) - 12,5 А;
  • кондиционер (2,4 кВт) - 12 А;
  • СВЧ-печь (2,2 кВт) - 11 А;
  • электроводонагреватель накопительный (2 кВт) - 10 А;
  • электрочайник (1,8 кВт) - 9 А;
  • утюг (1,6 кВт) - 8 А;
  • солярий (1,5 кВт) - 7,5 А;
  • пылесос (1,4 кВт) - 7 А;
  • мясорубка (1,1 кВт) - 5,5 А;
  • тостер (1 кВт) - 5 А;
  • кофеварка (1 кВт) - 5 А;
  • фен (1 кВт) - 5 А;
  • настольный компьютер (0,5 кВт) - 2,5 А;
  • холодильник (0,4 кВт) - 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом. Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Онлайн расчет мощности тока для однофазной и трехфазной сети

Что такое полная, активная и реактивная мощность?

ЧТО ТАКОЕ ПОЛНАЯ, АКТИВНАЯ И РЕАКТИВНАЯ МОЩНОСТЬ? ОТ СЛОЖНОГО К ПРОСТОМУ.

 

В повседневной жизни практически каждый сталкивается с понятием "электрическая мощность", "потребляемая мощность" или "сколько эта штука "кушает" электричества". В данной подборке мы раскроем понятие электрической мощности переменного тока для технически подкованных специалистов и покажем на картинке электрическую мощность в виде "сколько эта штука кушает электричества" для людей с гуманитарным складом ума :-). Мы раскрываем наиболее практичное и применимое понятие электрической мощности и намеренно уходим от описания дифференциальных выражений электрической мощности.

 

ЧТО ТАКОЕ МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА?

В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для практических расчётов бесполезна. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность (Real Power)

Единица измерения — ватт (русское обозначение: Вт, киловатт - кВт; международное: ватт -W, киловатт - kW).

Среднее за период Τ  значение мгновенной мощности называется активной  мощностью, и

 

выражается формулой:  

В цепях однофазного синусоидального тока , где υ и Ι это  среднеквадратичные значения напряжения и тока,  а φ — угол сдвига фаз между ними.Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S, активная связана соотношением . 

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.

Реактивная мощность (Reactive Power)

Единица измерения — вольт-ампер реактивный (русское обозначение: вар, кВАР; международное: var).

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними:

 (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью P  соотношением:  .

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до минус 90° является отрицательной величиной. В соответствии с формулой    

реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например,асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения

Полная мощность (Apparent Power)

Единица полной электрической мощности — вольт-ампер (русское обозначение: В·А, ВА, кВА-кило-вольт-ампер; международное: V·A, kVA).

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: ; соотношение полной мощности с активной и реактивной мощностями выражается в следующем виде:     где P — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q›0, а при ёмкостной Q‹0).Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

 

Визуально и интуитивно-понятно все вышеперечисленные формульные и текстовые описания полной, реактивной и активной мощностей передает следующий рисунок :-) 

Специалисты компании НТС-групп (ТМ Электрокапризам-НЕТ) имеют огромный опыт подбора специализированного оборудования для построения систем обеспечения жизненно важных объектов бесперебойным электропитанием. Мы умеем максимально качественно учитывать большое количество электрических и эксплуатационных параметров, которые влияют на выбор оборудования. Производители ИБП и электрогенераторов в документации обязательно указывают полную и активную мощность. Производители стабилизаторов напряжения обычно указывают коэффициент 1(кВт=кВА). Специалисты компании НТС-ГРУПП помогут Вам разобраться  в технических характеристиках и максимально комфортно купить ИБП. Несмотря на то что у нас большой выбор стабилизатор напряжения для дома или офиса-  мы поможем Вам найти именно тот, который Вам нужен.

 

© Материал подготовлен специалистами компании НТС-групп (ТМ Электрокапризам-НЕТ) с использованием информации из открытых источников, в т.ч. из свободной энциклопедии ВикипедиЯ https://ru.wikipedia.org  

 

Как регулировать мощность переменного тока / Хабр

Решил как-то отец собрать для дачи некое устройство, в котором, по его заверению, можно будет варить сыр. Устройство сие вид имело могучий и представляло из себя железный короб, подозрительно напоминающий старую стиральную машинку. Внутрь короба (все также добротно!) были вмонтированы три тэна по 1700 Ватт каждый. В общем сыра должно было хватить на небольшой посёлок.

Изделие (внешне выглядящее как что-то из безумного макса), должно быть весьма технологичным и поддерживать заданную температуру в максимально узких пределах. Для этого рядом появилась ещё одна коробка с симисторами, к которым подключались ТЭНы и схема, выдающая высокий уровень при переходе синусоиды через ноль. А у меня появился интересный проект.

Итак нам нужно выходить на заданную температуру и поддерживать её, с этим должен справляться алгоритм ПИД регулятора. Глубоко вдаваться в его работу не буду, скажу лишь что он получает на вход текущую ошибку, а на выходе выдает какое-то число в заданных пределах. У меня таким числом будет мощность выдаваемая на ТЭН, хотя в принципе, это может быть любой инерционный процесс, например обороты двигателя. Что важно для ПИД регулятора, это чтобы выходная величина производила воздействие линейно. Поэтому попробуем разобраться в способах регулировки мощности и их линейности.

Как вообще регулируется мощность?

Мощность - это произведение силы тока на напряжение. Если представить это произведение графически, то для постоянного тока, это будет площадь прямоугольника со сторонами равными напряжению и току

Так как при постоянном сопротивлении и напряжении ток тоже будет постоянным, то заменим ось тока на ось времени. Сопротивление я беру постоянным для объяснения принципа регулирования.

Тогда при заданном напряжении (12 В) и сопротивлении в 12 Ом, по закону Ома: I=U/R, получаем ток равный 1 А, и соответственно мощность за единицу времени будет равна 12 Вт. При другом сопротивлении мощность, естественно тоже изменится.

Теперь, если мы хотим регулировать мощность за единицу времени, нам нужно как-то изменять площадь фигуры за единицу времени. Самым чистым способом будет просто изменять напряжение, тогда и мощность будет пропорционально изменяться. Но контроллер, как и любые цифровые устройства, не умеет плавно изменять напряжение на ножках, он может либо "поднимать" их до высокого уровня, либо "опускать" до низкого уровня. Этот недостаток он компенсирует скоростью, даже самый дохленький современный МК может работать на частотах в миллионы тактов в секунду. Чтобы регулировать мощность, контроллер будет очень быстро "дрыгать" ножкой, тем самым изменяя результирующая площадь импульса за единицу времени.

На этом принципе устроена широтно-импульсная модуляция, она же ШИМ. Изменяя время (ширину) импульса за период мы изменяем выдаваемую мощность. На рисунке выше, показано два периода ШИМа. Каждый период имеет отношение площади импульса к площади всего периода 0.5, те половину времени периода контроллер выдает высокий уровень сигнала, другую половину низкий. Отношение времени высокого уровня сигнала к времени низкого называется скважностью. Красная линия на графике отражает результирующую мощность за единицу времени, по ней видно что при скважности 0.5 мощность также упала на половину (с 12 до 6 Вт). Хорошая новость состоит в том, что, ШИМ в контроллерах реализован аппаратно. Так что для регулирования чего-то достаточно его запустить и, по необходимости, изменять скважность.

Для постоянного тока, режим ШИМа оптимален, причем чем более инерционный прибор мы к нему подключаем, тем меньшую частоту ШИМа можно использовать. Для большого ТЭНа достаточно чуть ли не одного герца, а вот для светодиодов лучше использовать частоту побольше. Кстати частота ШИМа в подсветке экрана ноутбука, зачастую оказывается чуть ли не решающим фактором при покупке, так как, при слишком низкой частоте, глаза будут быстро уставать.

Если попробовать провернуть трюк с ШИМом для переменного напряжения, мы увидим что все сломалось и мощность перестала регулироваться линейно

одинаковые промежутки времени стали давать нам разную площадь, а значит разную мощность. Однако, если разбить полученные отрезки на на ещё более мелкие, то процентное соотношение ширины импульса к ширине кусочка будет выравниваться.

Если мы возьмем равный процент выдаваемой мощности от каждого кусочка, в результате мы получим такой же процент, от мощности всей волны, а на выходе мы получим линейный регулятор мощности для переменного тока. Причем чем большую частоту будет иметь ШИМа, тем на большее количество кусочков он разобьет синусоиду, а значит мы получим большую линейность.

Это было бы решением всех проблем, но в моем случае устройством коммутировавшим нагрузку был не быстрый транзистор, а симистор - медленный прибор, с максимальными рабочими частотами в пределах нескольких сотен герц, к тому же симистор можно только открыть, закроется он сам при переходе через ноль. На таких частотах управлять переменным напряжением которое имеет частоту 50 Гц, линейно не получится. Поэтому здесь нужно использовать какой-то другой подход и как раз для него, помимо симисторов, была установлена схема перехода через ноль.

В случае с симисторами лучше разбить синусоиду на куски с одинаковыми площадями и записать время каждого такого кусочка в таблицу. Тогда каждое последующее значение из таблицы будет линейно увеличивать мощность.

На графике выше полуволна синусоиды разбита на части разные по времени, но имеющие одинаковую площадь, а значит несущие в себе одинаковую мощность. Все что нам останется сделать это загрузить таблицу с временными интервалам в наш котроллер, синхронизировать какой-то из его таймеров с частотой синусоиды, для этого используется схема перехода через ноль, и просто брать из таблички нужное значение, в течении которого будет высокий уровень. Суть метода похожа на ШИМ, но немного доработанный и синхронизированный с источником переменного напряжения.

Расчёт таблицы мощности

Теперь можно перейти непосредственно к расчёту.

Изначально задача заключается в том чтобы разбить синусоиду на нужное нам количество кусочков, каждый из которых будет иметь одинаковую площадь. На этом моменте, обычно проступает холодный пот, так-как площадь под графиком это и есть геометрическое определение интеграла. Соответственно нам нужно будет взять интеграл от функции при этом определить такие пределы интегрирования, которые будут давать одинаковый результат. Затем (как будто расчёта интегралов мало!) полученные пределы нужно будет перевести во время задержки (время в течении которого будет сохранятся высокий уровень). После чего полученное время перевести в понятное для контроллера число - количество тиков таймера. Звучит страшно, а по факту сейчас разберёмся:

Во первых сама функция - как было написано выше мощность это произведение тока на напряжение, для переменного тока (без сдвига фаз), это утверждение также верно, но, так-как и ток и напряжение меняются со временем P=IU превращается в P=I*sin(t) * U*sin(t). Так как амплитуда синусоиды нас сильно не волнует, уравнение вырождается до P=sin^2(t).

Неопределённый интеграл от квадрата синуса

Теперь нужно подобрать пределы для определенных интегралов. Выберем, насколько частей мы хотим разбить нашу синусоиду: я выбрал сто, чтобы можно было регулировать мощность с шагом в 1%.

Итак мы нашли чему будет равен неопределённый интеграл и даже выбрали шаг. Теперь нужно подобрать пределы интегрирования. Смысл их подбора заключается в том, чтобы значение определенного интеграла было постоянным при их смене. Напомню, что неопределенный интеграл это формула, а определённый вполне конкретное число. Определённый интеграл считается по формуле:

То есть мы берем неопределённый интеграл, подставляем в него верхнее число, затем нижнее, и вычитаем второе из первого.

Наш неопределённый интеграл является смешанной тригонометрической функцией, а значит не имеет общего аналитического решения. Чаще всего такие функции решаются либо числовыми, либо графическими методами. Графический метода заключается в том что мы строим графики для правой и левой части уравнения их пересечение будет решением уравнения. На рисунке показано решение уравнения для 0.2

Наряду с графическим методом можно использовать численный, то есть подбор решения. Будем подставлять в неопределённый интеграл числа до тех пор пока не найдём решение). Можно использовать лист и бумажку чтобы попрактиковаться в математике, можно онлайн калькулятор, я же буду использовать Python и библиотеки numpy:

import numpy as np rad_arr=list() #записываем неопределённый интеграл integral=lambda rad: (rad/2)-(math.sin(2*rad)/4) #составляем простенький цикл для подбора решений for x in np.arange(0, 0.78, 0.015): #шаг подбора for xx in np.arange(0, 3, 0.00001): if func(xx) >= x: print(xx) rad_arr.append break;

Отлично мы получили массив чисел (пределов интегрирования!), валидность этих чисел можно проверить подставив их в интеграл. В результате должна получится площадь равная выбранному шагу! Теперь, если подставить полученные числа на график мощности, должна получится следующая картина:

Если все сошлось, то можно двигаться дальше и задать получившимся числам размерность времени, потому что сейчас они в радианах. Чтобы это сделать нужно выяснить угловую скорость, для частоты сети, то есть количество радиан в секунду.

Тогда узнаем сколько сколько длится одна радиана

Теперь, значения задержек в радианах, превратим во время, умножив каждое значение на период радианы (T). Проверим ход своей мысли: действительно-ли получится время задержки, если умножить задержку, на период? Задержка имеет размерность радиан, период - секунд за радиану, мы хотим их перемножить. Тогда рад * ( сек / рад ) = сек. Мы получили время, а значит ход мыслей должен быть верным.

Для расчётов я опять предпочту python:

#стандартная частота сети frequency = 50 #находим частоту в радианах rad_per_s=frequency*(2*math.pi) #находим период радианы s_per_rad=1/rad_per_s #находим задержки используя полученный ранее массив delay_arr=[x*s_per_rad for x in rad_arr]

На этом моменте мы получили универсальную таблицу задержек, теперь необходимо конвертировать её специально под микроконтроллер.

Расчёт таймера МК и перевод таблицы

Время необходимо перевести в понятную для МК величину - количество переполнений таймера. Но сначала необходимо определится с частотой таймера: чем выше частота, тем точнее он будет отмерять время, но с другой стороны, тем меньше времени будет оставаться на выполнение остальной программы. Здесь необходимо найти золотую середину.

Для определения минимально допустимой частоты таймера, надо найти числа в массиве с минимальной разностью между ними. Разность тем меньше, чем ближе в максимуму синусоиды мы двигаемся. Тогда возьмем задержку при которой синусоида достигает единицы и число перед ним, после чего найдем их разность:

5 мс - 4.9363 мс = 0.0636 мс

Получившееся число является максимально допустимым периодом между прерываниями таймера, тогда через него найдём минимально допустимую частоту

1 / 0.0636 = 15 КГц

Значит для заданной точности в 1% будет достаточно таймера с частотой 15КГц. Частота МК составляет 16 МГц, значит между прерываниями будет 1000 тактов процессора, этого достаточно для выполнения остальной части программы, так что можно смело настраивать таймер на заданную частоту.

Для настройки таймера на определенную частоту, не кратную тактирующей используется режим таймера CTC - Clear Timer on Compare. В этом режиме таймер досчитывает до заданного числа и сбрасывается, после чего операция повторяется. Число при котором будет происходить совпадение считается по формуле

Число = Тактовая частота МК / предделитель таймера / выбранная частота

Частота выбрана, теперь нужно перевести таблицу в тики таймера. Делать я это буду опять на Python

#задаем частоту таймера generator_freg=15000 #получаем время одного периода таймера one_tick=1/generator_freq #получаем массив с тиками таймера tick_arr=[x/one_tick for x in delay_arr]

В общем-то на этом весь расчёт окончен, остается только отзеркалить получившийся массив для второй половины полуволны и загрузить в МК. Далее по прерыванию от синхроимпульса, нужно подать низкий уровень, на ножку управления симистором, запустить таймер и считать его переполнения (совпадения, тк. у нас режим CTC). Как только количество переполнений достигнет нужного числа из таблички, подаем высокий уровень на управляющую ножку. На этом линейный регулятор мощности переменного напряжения готов!

Заключение

Надеюсь статья была понятна и её было интересно читать. В дополнение хотелось бы сказать, сигнал перехода через ноль не приходит идеально вовремя, поэтому может потребоваться дополнительная коррекция, чтобы это исправить.

Код расчетов на python

import math import numpy as np rad_arr=list() integral=lambda rad: (rad/2)-(math.sin(2*rad)/4) for x in np.arange(0, 0.78, 0.015): for xx in np.arange(0, 3, 0.00001): if func(xx) >= x: print(xx) rad_arr.append break; frequency = 50 rad_per_s = frequency * (2 * math.pi) s_per_rad = 1 / rad_per_s delay_arr = [x * s_per_rad for x in rad_arr] generator_freg = 15000 one_tick = 1 / generator_freg tick_arr = [x / one_tick for x in delay_arr] print(tick_arr) 

Также, если кому-то будет интересно, могу поделится исходником готового регулятора для ардуино.

Калькулятор мощности постоянного тока • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Определения и формулы

Этот калькулятор используется для расчета мощности постоянного тока и всё, о чем тут говорится, относится, в основном, к постоянному току. Намного более сложный случай расчета мощности в цепях переменного тока рассматривается в нашем Калькуляторе мощности переменного тока. См. также Калькулятор пересчета ВА в ватты.

Электрический разряд

Линия электропередачи — пример устройства для передачи энергии от места, где она вырабатывается, до места, где она потребляется.

Электрический заряд или количество электричества — скалярная физическая величина, определяющая способность тел создавать электромагнитные поля и принимать участие в электромагнитном взаимодействии. На электрически заряженное тело, помещенное в электромагнитное поле, действует сила, при этом заряды противоположного знака притягиваются друг к другу, а одноименные заряды — отталкиваются.

Единицей измерения электрического заряда в системе СИ является кулон, равный заряду, проходящему через поперечное сечение проводника с током один ампер в течение одной секунды. Несмотря на то, что мы наблюдаем перемещение зарядов в любой электрической схеме, количество заряда не изменяется, так как электроны не создаются и не разрушаются. Электрический заряд в движении представляет собой электрический ток, рассматриваемый ниже. При перемещении заряда из одного места в другое мы осуществляем передачу электрической энергии.

Подробнее об электрическом заряде, линейной плотности заряда, поверхностной плотности заряда и объемной плотности заряда и единицах их измерения.

Сила тока

Сила тока — физическая величина, представляющая собой скорость перемещения заряженных частиц или носителей заряда (электронов, ионов или дырок) через некоторое сечение проводящего материала, который может быть металлом (например, проводом), электролитом (например, нейроном) или полупроводником (например транзистором). Если говорить более конкретно, это скорость потока электронов, например в схеме, показанной на рисунке выше.

В системе СИ единицей измерения силы тока является ампер (символ А). Один ампер — это ток, возникающий при движении заряженных частиц со скоростью один кулон в секунду. Обозначается электрический ток символом I и происходит от французского intensité du courant («интенсивность тока»).

Электрический ток может протекать в любом направлении — от отрицательной к положительной клемме электрической схемы и наоборот, в зависимости от типа заряженных частиц. Положительные частицы (положительные ионы в электролитах или дырки в полупроводниках) движутся от положительного потенциала к отрицательному и это направление произвольно принято за направление электрического тока. Такое направление можно рассматривать как движение заряженных частиц от более высокого потенциала к более низкому потенциалу или более высокой энергии к более низкой энергии. Это определение направления электрического тока сложилось исторически и стало популярным до того, как стало понятно, что электрический ток в проводах определяется движением отрицательных зарядов.

Такое произвольно принятое направление электрического тока можно также использовать для объяснения электрических явлений с помощью гидравлической аналогии. Мы понимаем, что вода движется из точки с более высоким давлением в точку с более низким давлением. Между точками с одинаковыми давлениями потока воды быть не может. Поведение электрического тока аналогично — он движется от точки с более высоким электрическим потенциалом (положительной клеммы) к точке с более низким потенциалом (отрицательной клемме).

Труба с водой ведет себя как проводник, а вода в ней — как электрический ток. Давление в трубе можно сравнить с электрическим потенциалом. Мы также можем сравнить основные элементы электрических схем с их гидравлическими аналогами: резистор эквивалентен сужению в трубе (например, из-за застрявших там волос), конденсатор можно сравнить с установленной в трубе гибкой диафрагмой. Катушку индуктивности можно сравнить с тяжелой турбиной, помещенной в поток воды, а диод можно сравнить с шариковым обратным клапаном, который позволяет потоку жидкости двигаться только в одном направлении.

В системе СИ сила тока измеряется в амперах (А) и названа в честь французского физика Андре Ампера. Ампер — одна из семи основных единиц СИ. В мае 2019 г. было принято новое определение ампера, основанное на использовании фундаментальных физических констант. Ампер также можно определить как один кулон заряда, проходящий через определенную поверхность в одну секунду.

Подробную информацию об электрическом токе можно найти в наших конвертерах Электрический ток и Линейная плотность тока.

Скорость передачи заряда можно изменять, и эта возможность используется для передачи информации. Все системы передачи связи, такие как радио (конечно, сюда относятся и смартфоны) и телевидение, основаны на этом принципе.

Электрическое напряжение

Электрическое напряжение или разность потенциалов в статическом электрическом поле можно определить как меру работы, требуемой для перемещения заряда между выводами элемента электрической схемы. Элементом может быть, например, лампа, резистор, катушка индуктивности или конденсатор. Напряжение может существовать между двумя выводами элемента независимо от того протекает между ними ток или нет. Например, у 9-вольтовой батарейки имеется напряжение между клеммами даже если к ней ничего не присоединено и ток не протекает.

Единицей напряжения в СИ является вольт, равный одному джоулю работы по переносу одного кулона заряда. Вольт назван в честь итальянского физика Алессандро Вольта.

В Северной Америке для обозначения напряжения обычно используется буква V, что не слишком удобно. Фактически, это так же неудобно, как и использование футов и дюймов. Сравните, например, V = 5 V or U = 5 V. Что бы вы выбрали? Во многих других странах, считают, что для обозначения напряжения лучше использовать букву U — потому что так удобнее. В немецких, французских и русских учебниках используется U. Считается, что эта буква происходит от немецкого слова Unterschied, означающего разницу или разность (напряжение — разность потенциалов).

Мы знаем, что энергия, которая была использована для перемещения заряда через элемент схемы, не может исчезнуть и должна где-то появиться в той или иной форме. Это называется принципом сохранения энергии.

Например, если этим элементом был конденсатор или аккумулятор, то энергия будет храниться в форме электрической энергии, готовой для немедленного использования. Если же этот элемент был, например, нагревательным элементом в духовке, то электроэнергия была преобразована в тепловую. В громкоговорителе электрическая энергия преобразуется в акустическую, то есть механическую энергию, и тепловую энергию. Практически вся энергия, которую потребляет работающий компьютер, превращается в тепло, которое нагревает помещение, в котором он находится.

Теперь рассмотрим электрический элемент в форме автомобильной аккумуляторной батареи, подключенной к генератору для зарядки. В этом случае энергия подается в элемент. Если же двигатель не работает, но работает акустическая система автомобиля, то энергия подается самим элементом (батареей). Если ток входит в одну из двух клемм аккумулятора и внешний источник тока (в нашем случае — генератор) должен расходовать энергию, чтобы получить этот ток, то такая клемма называется положительной по отношению к другой клемме аккумулятора, которая называется отрицательной. Отметим, что эти знаки «плюс» и «минус» выбраны условно и позволяют нам обозначить напряжение, существующее между двумя клеммами.

Подробнее об электрическом потенциале и напряжении

USB тестер с соединителями типа USB-C, подключенный к зарядному устройству и смартфону (см. Пример 2 выше)

На рисунке выше показан рассмотренный в Примере 2 USB тестер с соединителями USB Type C, подключенный к зарядному устройству USB (слева). Справа к тестеру подключен заряжаемый смартфон. Тестер измеряет потребляемый смартфоном ток. Красной стрелкой на тестере показано текущее направление тока. Иными словами, на дисплее тестера показано, что нагрузка (смартфон) подключена к правому порту и заряжается. Отметим, что если вместо зарядного устройства к левому порту подключить какое-нибудь USB-устройство, например, флэш-накопитель (флэшку), то данный тестер покажет обратное направление движения тока и потребляемый флэшкой ток.

Электрическое сопротивление

Электрическое сопротивление — физическая величина, характеризующая свойство тел препятствовать прохождению электрического тока. Оно равно отношению напряжения на выводах элемента к протекающему через него току:

Эта формула называется законом Ома. Многие проводящие материалы имеют постоянную величину сопротивления R, поэтому U и I связаны прямой пропорциональной зависимостью. Сопротивление материалов определяется, в основном, двумя свойствами: самим материалом и его формой и размерами. Например, электроны могут свободно двигаться через золотой или серебряный проводник и не так легко через стальной проводник. Они совсем не могут двигаться по изоляторам любой формы. Конечно, и другие факторы влияют на сопротивление, однако в значительной меньшей мере. Такими факторами являются, например, температура, чистота проводящего материала, механическое напряжение проводящего материала (используется в тензорезистивных датчиках) и его освещение (используется в фоторезисторах).

Подробнее об электрическом сопротивлении, проводимости and удельной проводимости and удельном сопротивлении.

Электрическая мощность

Мощность представляет собой скалярную физическую величину, равную скорости изменения, передачи или потребления энергии в физической системе. В электродинамике мощность — физическая величина, характеризующая скорость передачи, преобразования или потребления электрической энергии. В системе СИ единицей электрической мощности является ватт (Вт), определяемый как 1 джоуль в секунду. Скорость передачи электрической энергии равна одному ватту, если один джоуль энергии расходуется на перемещение одного кулона заряда в течение одной секунды.

Более подробную информацию о мощности вы найдете в нашем Конвертере единиц мощности.

Расчет электрической мощности на постоянном токе

Мощность, необходимая для перемещения определенного числа кулонов в секунду (то есть для создания тока I в амперах) через элемент схемы с разностью потенциалов U пропорциональна току и напряжению, то есть

В правой части этого уравнения находится произведение джоулей на кулоны (напряжение в вольтах) на кулоны в секунду (ток в амперах), в результате получаются джоули в секунду, как и ожидалось. Это уравнение определяет мощность, поглощенную в нагрузке, выраженную через напряжение на выводах нагрузки и протекающий через нее ток. Это уравнение используется в нашем калькуляторе вместе с уравнением закона Ома.

Лабораторный блок питания, показывающий напряжение на нагрузке и протекающий через нее ток

Автор статьи: Анатолий Золотков

Формула мощности электрического тока. Как узнать, найти, вычислить, рассчитать мощность.

Электрическая мощность является одной из наиболее важных и значимых характеристик, которая показывает величину, силу той электротехники, систем, цепей, что работают, выполняя ту или иную функцию. Естественно, как и любая другая физическая величина электрическая мощность должна иметь свою меру, благодаря которой появляется возможность ее рассчитывать, делая заведомо точные, экономичные, эффективные устройства, системы и т.д. Для расчетов существуют определенные формулы, по которым и находятся нужные значения мощности.

Формула мощности тока (электрического) достаточно проста и выражается как произведение напряжения на силу тока. То есть, чтобы найти электрическую мощность достаточно просто напряжение умножить на ток. Если воспользоваться законом ома, то ее можно найти и через сопротивление. В этом случае электрическая мощность будет равна силе тока в квадрате умноженный на сопротивление или же напряжение в квадрате деленное на сопротивление.

Напомню, что при использовании формул подразумевается применение основных единиц измерения физических величин. В нашем случае основными единицами будут:

Электрическая мощность — Ватт;
Сила тока — Ампер;
Напряжение — Вольт;
Сопротивление — Ом.

Исходя из этого формула мощности электрического тока будет звучать так — 1 Ватт равен 1 Вольт умноженный на 1 Ампер. Думаю вы смысл поняли. Меньшими единицами измерения мощности является милливатты (1000 мВт = 1 Вт), большими единицами являются киловатты и мегаватты (1 кВт = 1000 Вт, 1 МВт = 1000 000 Вт). Милливатты это достаточно маленькая мощность, ее используют в электронике, радиотехнике. К примеру мощность слухового аппарата измеряется именно в милливаттах. Мощность в ваттах можно встретить в звуковых усилителях, у небольших блоках питания, мини электродвигателях. Киловатты это мощность, которая часто встречается в бытовых и технических устройствах (электрочайники, электродвигатели, обогреватели и т.д.). Мегаватты это уже достаточно большая мощность, ее можно встретить на электроподстанциях, электростанциях, у потребителях электроэнергии размером с город и т.д.

Если говорить о формуле более научной, которая электрическую мощность тока выражает через работу и время, то она будет звучать так — электрическая мощность равна отношению работы тока на участке цепи ко времени, в течении которого совершается эта работа.

То есть, работа деленная на время будет определять мощность. Кроме этого часто путают такие величины как ватты и ватт-час. В ваттах измеряется электрическая мощность — скорость изменения энергии (передачи, преобразования, потребления). А ватт-час являются единицей измерения самой энергии (работы). В ватт-часах выражается энергия, произведенная (переданная, преобразованная, потребленной) за определенное время.

Мощность также разделяется на активную и реактивную. Активная мощность — часть полной мощности, что удалось передать в нагрузку за период переменного тока. Она равна произведению действующих значений напряжения и тока на cosφ (косинус угла сдвига фаз между ними). Электрическая мощность, что не была передана в нагрузку, а привела к некоторым потерям (на излучение, нагрев) называется реактивной мощностью. Она равна произведению действующих значений напряжения и тока на sinφ (синус угла сдвига фаз между ними).

P.S. Электрическая мощность является одной из главных величин и характеристик, используемые в электротехнике. Именно ее мы узнаем при покупки того или иного электрического устройства. Ведь она определяет силу, с которой электротехника может работать. К примеру электродрель. Если мы купим дрель недостаточной мощности, то она просто не сможет обеспечить нам нормальную работу при сверлении. Хотя гнаться за слишком большой мощностью также не следует, ведь это ведет к излишней трате электроэнергии, за которую вы будете платить. Так что у всего должна быть своя мера и мощность.

Мощность переменного тока - Medianauka.pl

Рассмотрим, как изменяется мощность в случае синусоидального переменного тока.

Напомним, что: Р = УИ , где U - электрическое напряжение и I - ток и

.

Для синусоидального переменного тока напряжение и ток изменяются во времени следующим образом: U = U 0 sinωt и I = I 0 sinωt .

Подставляя приведенные выше зависимости в формулу степени, получаем:

где:

  • Р - текущая мощность,
  • У - напряжение,
  • I - сила тока,
  • U 0 - максимальное напряжение,
  • I 0 - максимальная интенсивность,
  • т - время,
  • ω – круговая частота, равная 2π/T или 2π f, где T – период, а f – частота.
  • Р - электрическое сопротивление.

Таким образом, мощность переменного тока также меняется со временем. Вводится понятие средней мощности. Формула средней мощности синусоидального переменного тока выглядит следующим образом:

Приведенная выше формула верна, если между напряжением и током нет фазового сдвига (т. е. и напряжение, и ток экстремальны и равны нулю одновременно).

Используются разные термины мощности:

  • мгновенная электрическая мощность P c = U c I c , где учитываются мгновенные значения напряжения и тока;
  • активная электрическая мощность - P = RI 2 = UIcosα, где α – фазовый сдвиг между током и напряжением;
  • реактивная электрическая мощность - P = UIsinα = XI 2 , где X - реактивное сопротивление нагрузки (пассивное сопротивление);
  • полная электрическая мощность P sk = U sk I sk , где учитываются действующие значения напряжения и тока;

Среднеквадратичное значение напряжения и тока

Среднеквадратичное значение напряжения переменного тока равно напряжению постоянного тока, которое, протекая по той же электрической цепи, выделит в приемнике мощность, равную средней мощности, рассеиваемой переменным током.

Текущая мощность

Текущая мощность, электрическая мощность в случае постоянного тока, есть произведение работы электрического тока (электричества) до момента, когда эта работа была совершена.

© medianauka.pl, 2021-07-18, ART-4108


.

Мощность электричества и работа электрического тока

Работа , совершаемая электрическим током , связана с переносом электрического заряда между точками, отличающимися электрическими потенциалами . Значит, это связано с изменением потенциальной энергии зарядов, находящихся внутри проводника.

Формулу работы электрического тока можно записать в виде:

Вт = qU,

где: q - электрический заряд, U - напряжение, т.е. разность потенциалов.

Единицей работы электрического тока является джоуля , но в технике часто используется другая единица, так называемая киловатт-часа , что равно:

1кВтч = 3600000Дж

Это работа, которую электрическое устройство мощностью 1000Вт совершит за один час.

Мощность можно определить как способность системы выполнять указанное задание в заданное время. Чем быстрее будет совершена работа, тем больше будет мощность, и наоборот.



где: P - мощность, t - время.

Подставив выражение для работы электрического тока в последнее уравнение, получим:



Так как отношение заряда q ко времени t равно электрического тока , то его мощность равна:

Комбинируя последнее уравнение с законом Ома (U = IR), можно получить два других уравнения для электрической мощности т.е.:



где: R - электрическое сопротивление.

Блок питания для составляет Вт , что равно Дж в секунду

.

Работа от переменного тока и мощность

Электрический ток равен произведению напряжения и тока . В случае переменного тока его мгновенная мощность является произведением мгновенных значений вышеупомянутых значений, поэтому:



Согласно закону Ома напряжение равно:

, поэтому мощность тока можно записать в виде:



где: I 0 - амплитуда тока, ω - частота, t - время.

Значит мгновенная мощность должна быть равна:

Как следует из последней зависимости мгновенная мощность принимает только положительные значения и изменяется подобно синусоидальной квадратичной функции с амплитудой RI 0 2 .

График зависимости мгновенной мощности переменного тока от времени, представленный выше, показывает, что средняя текущая мощность за один период (T) равна половине максимального значения:



Средняя мощность также равна мощность эффективная , так как действующие значения напряжения и тока соответственно равны:

, поэтому их произведение дает:

) получаем:



Работа , выполненная текущей , равна величине площади фигуры, ограниченной мощностью , графиком зависимости от времени и оси времени.Эта площадь равна произведению эффективной мощности и на , поэтому:

.

КАК СЧИТАТЬ МОЩНОСТЬ, НАПРЯЖЕНИЕ И ТОК УСТРОЙСТВА. ВАТТЫ, АМПЕРЫ, ВОЛЬТЫ. | Варшава

Электрический ток связан с рядом физических величин, которые его характеризуют. Некоторые из этих значений вместе с соответствующими значениями размещены на заводских табличках многих устройств, эксплуатируемых ежедневно, для определения соответствующих рабочих параметров этих устройств - несоблюдение условий эксплуатации устройства может привести к их повреждению.

Знание значений некоторых величин особенно полезно, например.при покупке подходящего адаптера для ноутбука. К основным параметрам, определяющим работу устройства, относятся мощность, напряжение и ток.

Напряжение (U)

Напряжение – это разность потенциалов между двумя точками электрической цепи. Выражается в вольтах (В). Номинальное напряжение определяет значение этого параметра для правильной работы устройства и в общем случае является максимальным напряжением электрического тока, которое можно подключить, не опасаясь повредить устройство или работать с потерями в результате его неправильной эксплуатации.

Интенсивность (I)

Интенсивность – это величина, характеризующая протекание тока, т.е. поток зарядов. Он определяется как отношение величины электрического заряда, протекающего через поперечное сечение проводника в единицу времени. Единицей силы является ампер (А). Сила тока в электрической цепи зависит от источника (U), к которому подключена цепь, и от полного сопротивления цепи (R).

Существует величина, связанная с силой тока, называемая номинальным током.Это значение тока, протекающего через устройство при нормальных условиях эксплуатации, для которых было разработано электрическое устройство. Номинальный ток для силовых устройств определяет максимальную силу тока, которая может протекать через устройство без риска его повреждения. Номинальный ток часто используется взаимозаменяемо с мощностью устройства, поскольку оборудование изготавливается для работы при определенном (постоянном) номинальном напряжении.

Мощность (P)

Электрическая мощность – работа, совершаемая электричеством в единицу времени.Выражается в ваттах (Вт). Мощность данного устройства является произведением напряжения (U) и электрического тока (I) и выражает количество электроэнергии, потребляемой данным устройством. Этот параметр имеет особое значение, поскольку он связан с потреблением электроэнергии и, в конечном итоге, с эксплуатационными расходами устройства. В настоящее время производители стараются выпускать энергосберегающие устройства, т.е. устройства, эффективно работающие при меньшей мощности (малом энергопотреблении).

Потребление электроэнергии

Потребление энергии выражается в ампер-часах или ватт-часах (киловатт-часах).Ампер-час характеризует количество электроэнергии, проходящей через систему в час, а ватт-час относится к потребляемой электроэнергии в час. Мощность электрических устройств, или количество электроэнергии, потребляемой этим устройством в час, обычно определяется в киловатт-часах. Эта информация находится на паспортных табличках устройства и может быть использована для расчета стоимости эксплуатации устройства в течение дня или месяца.

Выбор рабочих параметров

Значения рабочих параметров устройства особенно важны при выборе соответствующих источников питания (блоков питания).При выборе блока питания, например, для ноутбука, обратите внимание на номинальное напряжение и ток блока питания (ноутбука и блока питания). Используемый блок питания должен обеспечивать именно то напряжение, которое требуется системе ноутбука, а значение тока может быть равно или выше, чем требуется для данной схемы компьютера. Это гарантирует правильную работу устройств без риска их повреждения. Разумеется, значения параметров можно найти на паспортных табличках устройств.

.

В энергосистеме нет питания. Это то, что оператор может сделать перед отключением нашего электричества

Business Insider сообщил о риске снижения запасов энергии ниже безопасного минимума в октябре. Проблема заключалась в обездвиживании нескольких крупных угольных блоков. Однако в то время нас спасла высокая производительность ветряных электростанций. Энергетики, однако, не скрывали, что в ближайшие недели может произойти существенное падение резерва и срабатывание механизмов, обеспечивающих бесперебойное энергоснабжение польских домов.

Вот что случилось. В последние дни, при повышенном спросе на энергию из-за морозов, у нас по-прежнему была проблема с наличием угольных блоков. Новый блок на Явожненской электростанции до сих пор не работает, он борется с аварией и не заработает не раньше конца апреля 2022 г. Кроме того, запланирована реконструкция крупного блока на Опольской электростанции, а также ряд более мелких генерирующих единиц.

Кроме того, в начале недели ветер был недостаточно сильным, чтобы ветряные электростанции работали на более высоких скоростях.Если мы добавим к этому чрезвычайную ситуацию в международной торговле энергией, то есть превращение Польши из импортера в нетто-экспортера электроэнергии, мы получим рецепт энергетического кризиса.

Ключевые резервы

Недавние события не были связаны с нехваткой электроэнергии для покрытия текущих потребностей поляков в электроэнергии. У нас просто не хватило достаточных резервов, чтобы в случае серьезной аварии на электростанциях - что не редкость - у нас не закончилась энергия. Системный оператор, то есть Polskie Sieci Elektroenergetyczne, каждый день заботится о том, чтобы на складе оставалось не менее 9 процентов. планируемый внутренний спрос на электроэнергию. На этой неделе, на пике, потребность в энергии превысила 27 ГВт. Таким образом, резерв должен был составлять чуть более 2 ГВт.

Читайте также в BUSINESS INSIDER

В понедельник оператору не хватило более 1 ГВт доступной мощности для поддержания этого безопасного резерва в несколько часов.Поэтому он решил использовать несколько контрмер, в том числе экстренных закупок электроэнергии из Литвы, Швеции, Германии и Украины . Однако в распоряжении PSE гораздо более широкий спектр деятельности.

В самом начале списка находятся стандартные меры, которые оператор использует в первую очередь. В случае возникновения проблем с наличием электроэнергии может в первую очередь запустить остановленные электростанции , которые остаются в т.н.холодный резерв или для максимизации мощности уже работающих агрегатов (вращающийся резерв).

Оператор также имеет в своем распоряжении гидроаккумулятор . Они перекачивают воду в верхний резервуар, а затем сливают ее в нижний резервуар, таким образом вырабатывая электроэнергию.Таким образом, они работают как накопители энергии — они позволяют хранить избыточную энергию в периоды ее перепроизводства, а затем использовать ее в периоды сокращения поставок. Крупнейшая гидроаккумулирующая электростанция в Польше расположена на Жарновецком озере в Чиманово в воеводстве. шпиц.

ГАЭС на Жарновецком озере | Монкпресс / Восточные новости

Далее в списке находятся дополнительные инструменты, в том числе рынок мощности , представленный в этом году, , который является пунктом назначения всех потребителей энергии в их счетах за электроэнергию.В рамках этого механизма производители электроэнергии будут получать вознаграждение не только за произведенную энергию, но и за готовность ее производить. Когда оператор решает, что имеющийся запас мощности меньше необходимого, он объявляет период угрозы подачи электроэнергии. Электростанции, участвующие в рынке мощности, должны затем поставлять в систему достаточную мощность. Слабость этого механизма в том, что от объявления периода угрозы до фактической подачи энергии должно пройти не менее 8 часов .Так что в экстренной ситуации не поможет.

В рынке мощности принимают участие и потребители энергии – предприниматели, которые сами подают заявку на участие в программе и должны ограничивать потребление электроэнергии по сигналу ФЧЭ (т.н. услуга DSR). Поддержание рынка мощности в этом году обошлось в 5,4 млрд злотых. Пока оператор никогда не использовал эту опцию.

Другим средством правовой защиты является помощь в соединении , которую PSE использовала в понедельник. Благодаря сотрудничеству операторов можно импортировать или экспортировать электроэнергию из другой страны, тем самым улучшая баланс в случае, например, выхода из строя крупного генерирующего агрегата или устраняя проблемы в работе передающей сети. Однако следует добавить, что это дорогостоящая сделка.

Меры последнего шанса

Еще одна группа инструментов — это экстренные меры, также известные как крайние меры.Оператор использует их в крайнем случае, когда не видит другого способа сбалансировать систему. Почему? Потому что они напрямую бьют по потребителям электроэнергии.

Если система по-прежнему не разряжается после использования предыдущих инструментов, PSE может снизить энергопотребление сверху. Во-первых, он может приказать крупным промышленным предприятиям, которые потребляют больше всего электроэнергии, ограничить количество потребляемой энергии или полностью отключить устройства от сети.Так называемый силовые каскады.

Если это не поможет, оператор может выбрать отключение электричества для всех потребителей в районе. Это настолько опасно, что электричество могут отключить не только в домах, но и, например, в больницах.

Стресс-тесты в энергетике

Последний раз каскады электроснабжения ЭСЭ запускались летом 2015 года.когда у нас была серия аварий в энергетике, в основном из-за жары и пониженного уровня воды для охлаждения угольных блоков. Затем несколько тысяч производственных предприятий были вынуждены снизить энергопотребление. Оператор сделал это впервые почти за три десятилетия.

Сегодня у PSE больше средств правовой защиты, чем в 2015 году., а летом мощной опорой системы является динамично развивающаяся солнечная ферма. В последующие кризисные годы было много ситуаций, но оператор вышел из них невредимым.

Самыми тяжелыми проблемами для системы были проблемы крупнейшего энергетического комплекса страны - Белчатовской ТЭЦ, принадлежащей PGE. В июне 2020 года четыре квартала Белхатова были завершены из-за сильного дождя. Одна из станций науглероживания была затоплена, что сделало невозможным доставку сырья к котлам. В то время PSE выиграла от увеличения импорта электроэнергии.

В мае 2021 года станция Роговец, принадлежащая PSE, рухнула из-за ошибки сотрудника. Последствия были огромны - почти вся Белхатувская электростанция сразу выпала из сети. Потребовалось несколько дней, чтобы устройства были полностью готовы к работе. Тогда-то нас в очередной раз и спас от отключения электроэнергии аварийный импорт электроэнергии у соседей.

Всего через несколько дней после этой аварии компания PGE была вынуждена остановить крупнейший угольный блок Белхатувской электростанции. Все из-за пожара на конвейерной ленте, по которой транспортировался уголь. Возобновление работы установки потребовало времени, так как необходимо было отремонтировать систему науглероживания.

Энергетики боятся не только жары, но и сильных морозов . В прошлом, например, вода, используемая для охлаждения блоков, замерзала. По этой причине прошлой зимой была построена Поморжанская ТЭЦ, которая обеспечивает теплом жителей Щецина.

В настоящее время нехватка угля на рынке также может вызывать беспокойство.Перед отопительным сезоном электростанции начали тревожить об отсутствии достаточных запасов топлива. Это вызывает дополнительные опасения по поводу стабильности работы электростанций этой зимой.

.

Правильная присоединенная нагрузка для дома на одну семью

Спрос бытовой электроэнергии называется мощностью связь. Расчет пропускной способности подключения позволит нам быть точными определить, сколько киловатт необходимо для питания всех ваших приборов работающий на электричестве. Итак, давайте узнаем, как работает калькулятор мощности связи, а также что означает договорная мощность в этом контексте.

Если вы планируете ремонт или внутреннюю отделку, воспользуйтесь сервисом «Поиск подрядчика» на сайте «Строительные калькуляторы».Заполнив короткую форму, вы получите доступ к лучшим предложениям.

Присоединенная нагрузка для дома на одну семью - определение

Расчет подключенной нагрузки в начале необходимо доскональное понимание того, что это за параметр вообще. Итак, сила подключение для одноквартирного дома - это активная мощность, которую они потребляют все электроприборы работают от электричества. Наибольшее потребление энергии электричество, отопительные приборы выделяются.Такой параметр установлен все еще находится в стадии строительства с поставщиком электроэнергии.

В приложении введите сколько киловатт нам нужно для нашего хозяйства. После принятия заявки получаем условия подключения и подписываем договор. Заказанная мощность подключения для дома на одну семью в кВт должна быть необходимой выйти за рамки фактического спроса на имеющиеся или планируемые устройства с использованием электричества. Это очень важно, потому что вы идете с духом развития технологий, в наших домах будет появляться все больше и больше устройств электрические и электронные.Таким образом, мы можем избежать складывания заявка на дополнительное увеличение пропускной способности подключения.

Контрактная мощность

Контрактную мощность очень часто путают с понятие пропускной способности соединения. В то время как подключенная нагрузка определяет, что это максимальная потребность в электроэнергии домохозяйства индивидуальное подключение. С другой стороны, контрактная мощность - это максимальная заказанная мощность, который мы можем использовать от оператора. Обратите внимание, что значение мощности договор не может быть выше стоимости присоединительной мощности.

Стоит обратить внимание на определение этих терминов популярными дистрибьюторами электроэнергии, такими как Tauron или также ПГЕ. Компания Таурон разборчиво сообщает, в том числе о том, как ты можешь увеличить подключаемую нагрузку. Заказанная услуга в первую очередь касается ситуации, когда спрос на электроэнергию резко возрастет. Если мы планируем покупка индукционной плиты или хотим перейти на электрическое отопление, это Таурон предлагает увеличить спрос на пропускную способность.

Однако при использовании услуг PGE или Tauron, мы замечаем, что контрактная мощность, т.е. заказанная мощность, намного выше в по сравнению с тем, сколько киловатт мы фактически используем каждый месяц, рассмотрите возможность уменьшения этого значения. Благодаря этому мы избежим переплаты Счета. Для получения дополнительных советов также ознакомьтесь с этой статьей о стоимости подключения. энергия .

Калькулятор подключенной нагрузки

Если нас интересует расчет мощности подключения полезно использовать различные таблицы энергопотребления электричество отдельных приборов, таких как плиты, стиральные машины или холодильники.Однако такое определение, сколько киловатт нам нужно, чтобы запитать все это дело домохозяйство требует не только большого мастерства, но и мы не можем многие другие параметры, влияющие на реальное энергопотребление, опущены электричество. Тогда это окажется гораздо более полезным инструментом. Калькулятор подключенной нагрузки.

Расчет мощности подключения и какова мощность подключения для дома на одну семью

Расчет присоединяемой нагрузки на основе Калькулятор включает в себя, помимо прочего, площадь здания, количество и тип бетона устройства, а также тип котла и даже его КПД.Во многих случаях нет коммуна и город, в котором мы живем, не имеют значения. Конечно, вы должны имейте в виду, что калькулятор пропускной способности подключения может немного отличаться значение потребления кВт, по сравнению с расчетами, приведенными по удельному распределитель электроэнергии.

Присоединенная нагрузка для дома на одну семью - стол

Определение подключаемой нагрузки в различных Варианты можно найти в таблице 1. На основании этих данных нам будет проще оценить, какая мощность ближе всего к сумме значений мощности устройств, которые будут работать одновременно.Благодаря этой таблице мы узнаем, что значение должно быть введено в заявку на потребляемую мощность подключения. принадлежит не забудьте упомянуть, что для помощи при подключении всегда дистрибьютор соответствует специальной защите перед счетчиком.

Требуемая подключаемая нагрузка в различных вариантах

Безопасность предварительный счетчик

силы подключение [кВт]

силы договорная [кВт]

[А]

Соединение 1-фазный

Соединение 3-фазный

Соединение 1-фазный

Соединение 3-фазный

10

2,0

6,0

1,0

4,0

13

2,0

8,0

1,0

5,0

16

3,0

10,0

2,0

7,0

20

4,0

12,0

3,0

9,0

25

5,0

16,0

4,0

11,0

32

6,0

20,0

5,0

14,0

35

6,0

22,0

5,0

15,0

40

8,0

25,0

6,0

17,0

50

-

32,0

-

22,0

63

-

40,0

-

27,0

Источник: www.elzet.eu



Полезный элемент в расчетах мощности подключение также будет в таблице на сайте PGE, которая включает примеры устройств с их номинальной мощностью.В этой таблице мы найдем, среди прочего, такие информация что за:

  • Номинальная мощность электроплиты колеблется от 7 до 10 кВт 90 315 90 314 Номинальная мощность микроволновой печи варьируется от 0,8 до 2 кВт
  • Индукционная плита номинальная мощность варьируется от 7,2 до 7,4 кВт
  • Номинальная мощность печи варьируется от 2 до 5 кВт 90 315 90 314 Номинальная мощность беспроводного чайника 2,5 кВт 90 315 90 314 Номинальная мощность электрического котла колеблется от 1,3 до 5 кВт 90 315 90 314 Номинальная мощность утюга колеблется от 0,8 до 1,4. кВт 90 315 90 328

    Благодаря информации, предоставленной компанией PGE, нам легче оценить фактическую потребность в энергии электричество в случае срабатывания всех устройств, самые распространенные из которых мы используем.Таблица потребления электроэнергии конкретными устройствами очень большая Полезный. Если мы выберем трехфазный счетчик, подключенная нагрузка может достичь значения мин. 12 кВт. Однако в случае 1-фазного счетчика значение подключаемая нагрузка не должна превышать 5 кВт. Если по разным причинам оказывается что мы не в состоянии сами рассчитать мощность в конце концов подключение, с этим вопросом стоит обратиться к энергооператору или воспользоваться помощью опытного электрика.

    Рекомендуемые электрогенераторы по отличным ценам

    .

    Какая мощность подключения для одноквартирного дома?

    Тематический отдел - Специалисты Bosch по теплотехнике Ворота, двери, рамы, приводы - Специалисты Hörmann Polska Ворота, окна, двери и заборы - Специалисты WIŚNIOWSKI Ворота, окна, двери и оконные жалюзи - Специалисты Krispol Центральная уборка пылесосом - Специалисты Aerovac Керамика для ванных комнат - Специалисты Koło Строительство химикаты - эксперты IS Knauf Крыши, водосточные желоба, фасады - эксперты Rheinzink Электрический теплый пол и антиобледенение - эксперты FENIX Polska Фасады, гидроизоляция, полы и керамзит - эксперты Weber Силиконовые краски и пропитки - эксперты Польские силиконы Rettig Отопление Изоляция из стекла и минеральной ваты - Специалисты Isover Брусчатка - Специалисты Polbruk Электрические котлы и обогреватели, возобновляемые источники энергии - Специалисты Kospel Инструменты - Специалисты Bosch Бетонные ограждения, садовая архитектура - Специалисты Joniec Мансардные окна - эксперт Fakro Мансардные окна - Эксперты Velux Окна и двери из ПВХ - Эксперты OKNOPLAST Вспененный перлит, грунтовки, стяжки, растворы, штукатурки - Эксперты Perlit Polska Кровля - эксперты Blachy Pruszyński Производитель дверей и дверных замков - Специалисты Gerda Профессиональная строительная химия Эксперты ISp.z oo - Специалисты Termo Organika Системы отопления - Специалисты Viessmann Системы отопления, возобновляемые источники энергии - Эксперты De Dietrich Системы вентиляции - Специалисты Alnor Системы вентиляции с рекуперацией тепла - Специалисты Pro-Vent Отопительная техника - Эксперты Buderus Отопительная техника - Эксперты GalmetWapno - эксперты Ассоциации Lindentabylation

    Допустимые форматы файлов: 'jpg', 'jpeg', 'gif', 'bmp', 'png'.Добавление нескольких файлов - нажмите CTRL.

    Администратор персональных данных: AVT-Korporacja sp.z o.o. со штаб-квартирой: ул. Лещинова 11, 03-197 Варшава. Цель обработки данных: ответ на заданный вопрос. Администратор персональных данных: AVT-Korporacja sp.о.о. со штаб-квартирой: ул. Лещинова 11, 03-197 Варшава. Цель обработки данных: ответ на заданный вопрос. Период обработки данных: Ваши данные будут обрабатываться до тех пор, пока не появится основание для их обработки, т.е. в данном конкретном случае, пока не будет дан ответ. Вы имеете право: получать доступ к своим данным, исправлять их, удалять их, ограничивать обработку, возражать против обработки ваших данных или их передачи.Вы можете: отозвать свое согласие на обработку ваших персональных данных, запросить удаление всех ваших данных. Правовые основания: ст. 5, 6, 12, 13 Общего регламента по защите данных (GDPR). читать далее

    .

    Смотрите также