Какой толщины пенополистирол для теплого пола


характеристики, преимущества и монтаж на trubanet.ru

На чтение 10 мин. Обновлено

Важным элементом при монтаже тёплых полов является теплоизоляционный материл. От него зависит расход тепла и поддержание в комнате оптимальной атмосферы.

Отсутствие теплоизоляции приведёт к образованию конденсата, а это в свою очередь к сырости и плесени. Кроме того, без данной прокладки часть тепла будет уходить вниз, тем самым расходоваться зря.

Наиболее популярным и современным теплоизоляционным изделием для обогревательных систем считается пенополистирол.

Что такое пенополистирол

Пенополистирол является вспененным полимерным веществом. Производится вспениванием массы при помощи добавления в неё низкокипящей жидкости. Вследствие чего, образуются гранулы с водонепроницаемой оболочкой.

Затем, на них воздействуют горячим паром, что приводит к их увеличению до 30 раз. Гранулы, соединяясь между собой, образуют пенополистирольные плиты, имеющие высокую плотность. Это изделие уникально, так как, несмотря на свою лёгкость и воздушность, способно противостоять давлению и сжатию.

Немецким учёным удалось получить данный материал в 20 века, в результате синтеза стирола — химического вещества, которое было выделено при нагреве смолы Стиракс.

Характеристики и плюсы пенополистирола

Пенополистирол лучше других теплоизоляционных изделий, так как с его применением получается жёсткая и прочная поверхность. Он схож с пенопластом, но обладает более плотной структурой с ячейками меньшего размера.

Основные положительные свойства пенополистирола:

  • утеплитель имеет высокую влагостойкость и способность не пропускать пары, что даёт возможность сохранять теплопроводимость на необходимом уровне, даже при действии на изделие влаги;
  • обеспечивает отличную шумоизоляцию, что является важным условием при установке тёплых систем;
  • экологичен, и не опасен для человека;
  • утеплитель препятствует развитию грибка и плесени;
  • устойчив к химикатам;
  • сохраняет эксплуатационные свойства при максимальных температурах, от — 50 до + 85 градусов;
  • имеет небольшой вес, что позволяет применять его без риска утяжеления конструкции;
  • прост в работе: укладка, подрезка, обработка, поэтому все процедуры можно делать самостоятельно;
  • укладывается на любое основание, так как его поверхность гладкая;
  • пониженный уровень теплопроводности, за счёт пузырьковой структуры;
  • обладает гидроизоляционным свойством, так как устойчив к влаге.

Следует отдельно сказать о безопасности материала — он не горит и даже имеет способность к самозатуханию. Но есть и минус утеплителя — выделение токсичных веществ при тлении.

Параметры выбора утеплителя, на что обращаем внимание

При покупке покрытия для тёплого пола с пенополистирола, следует брать во внимание такие показатели, как: качество и разновидность.

Первоначально, качество пенополистирольных плит для тёплых полов определяется по их внешнему виду. Следует учитывать такие моменты:

  1. Цвет — должен быть ярким и равномерным, что свидетельствует о соблюдении технологического процесса. Чаще продаются синего или оранжевого оттенка. Сама цветовая гамма на характеристики продукта не влияет.
  2. Запах — недопустимо наличие резкого запаха, небольшой лёгкий специфический может быть.
  3. Форма — чёткая геометрическая, а края ровные и не крошатся.
  4. Гранулы — одного размера без пустот.
  5. Поверхность — ровная, в противном случае теплоизоляционные качества будут снижены.

К сведению! Специалисты рекомендуют особо осмотреть место среза или разлома. При целостности гранул на данном участке, можно говорить о плохом их сцеплении друг с другом. В качественной плите, при разломе гранулы должны тоже разрушаться.

Аналоги пенополистирола

Существует ряд материалов, которые так же можно применять в качестве теплоизоляции, но по своим характеристикам они значительно уступаю пенополистиролу.

К ним относятся:

  1. Пробковая плита — имеет высокую стоимость.
  2. Минеральная вата — плохо переносит влагу, не подходит при монтаже по грунту, и противопоказана при обустройстве водяного тёплого пола.
  3. Вспененный полиэтилен — тяжесть стяжки приводит к значительному уменьшению его толщины.
  4. Пенопласт — для тёплых полов менее подходящий материал, так как имеет хрупкую структуру и недостаточную жёсткость. Он может использоваться в тёплых системах, но при отсутствии нагрузки.

Полезно знать! Несмотря на утверждение производителей, пенопласт, особенно при обустройстве водяного тёплого пола, требует наличие хорошей гидроизоляции. Иначе, степень теплоизоляции существенно снизится под воздействием влаги.

Виды

На качество пенополистирола влияет технология производства, от неё зависят различные характеристики материала и особенности укладки. Выпускается полистирол нескольких видов.

Профильный (пенополистирольные маты)

Особую популярность при монтаже тёплых полов завоевали пенополистирольные плиты, которые разрабатывались именно для этих систем. Главное преимущество матов — специальные бобышки, находящиеся на их поверхности, они существенно упрощают монтаж нагревательных элементов, так как не требуется оборудование дополнительных деталей, для их крепежа.

Положительные стороны таких плит:

  • наличие жёсткого пароизоляционного пенополистирольного слоя — предохраняет от конденсата;
  • маты, имеющие фольгированное ламинированное покрытие — оно оберегает от действия химикатов, находящихся в стяжке;
  • небольшой вес и размер — упрощает ход укладки;
  • обладают боковыми замками — получается монолитная конструкция без акустических и холодовых швов;
  • наличие рельефной поверхности с обратной стороны — позволяет сглаживать небольшие шероховатости основания, и создаёт условие для его вентиляции;
  • эксплуатационный срок (50 лет) — при условии, что система тёплых полов будет правильно эксплуатироваться;
  •  не меняется толщина плиты под весом стяжки.

Фольгированный полистирол

Пенополистирол с фольгированным слоем, в первую очередь предназначен для нагревательных полов. Отражающая фольга способствует более эффективному обогреву помещения, так как происходит равномерная передача тепла от поверхности пола вверх.

При обустройстве водяного тёплого пола, пенополистирол обязательно должен иметь наличие фольгированного слоя. Процесс монтажа облегчит использование фольгированного полистирола.

Преимущества данной продукта:

  • термоустойчивость к температурным перепадам;
  • отличная звукоизоляция;
  • влагоустойчивость;
  • при нагревании не выделяет токсичных веществ;
  • не подвержен гниению.

Важно! Данный материал противопоказан при устройстве инфракрасных тёплых полов.

Непрессованный

Непрессованный пенополистирол изготавливается путём формовки состава, который предварительно просушен и вспенен при +80 градусов.

Это самый дешёвый материл, так же является и самым хрупким.

Видео – укладка утепления под теплый пол

Экструдированный теплоизоляционный материал

Процесс экструзии заключается в выдавливание смеси через экструдированное устройство с головками в форму плиты, с дальнейшей сушкой. Предварительно в материал вводится реагент, приводящий к активному вспениванию.

ЭППС — новая разновидность, производится в виде техноплекса и пенопремиума. Сегодня экструдированный утеплитель для тёплого пола становится всё более популярным.

ЭППС, в качестве подложки для тёплого пола идеальный вариант, так как не выделяет токсичных веществ от нагревания, и считается лучшим теплоизолятором. Однако, он достаточно хрупок, и не является хорошим звукоизолятором.

Прессованный и автоклавный

Прессованный материал похож на экструдированный, только отличается технологией производства.

Технология изготовления такая же, но вспенивание гранул осуществляется в автоклаве. Автоклавный полистирол не подходит для теплоизоляции тёплых полов. 

Смотрите видео

Где разрешается укладка

Пенополистирол рекомендован как утеплитель там, где недопустимо увеличение нагрузки на несущие перекрытия помещения, и в случаи с невысокими потолками. В ходе строительных работ пенополистирол используется, чтобы утеплить:

  • водопроводный трубопровод;
  • кровлю;
  • пол;
  • дверные и оконные откосы;
  • стены.

Например, финансово оправданным считается теплоизоляция трубопрокатных материалов пенополистиролом для водяных тёплых полов, из-за его свойств.

Кроме того, использование блочного пенополистирола, даёт возможность при неполадках получить доступ к трубопроводу, путём снятия отдельного участка покрытия. По этой же причине, изделие часто устанавливается при сооружении тёплых электрических полов.

На какое основание укладывается

Пенополистирол — доступный вид теплоизоляции, он способствует нормальному функционированию системы «тёплый пол». Укладывать материал можно на различные основания:

  • песчано-щебёночное — полученное путём утрамбовки грунта;
  • гравийное — которое утрамбовано и защищёно от влаги;
  • бетонное — оборудованное гидроизоляционным покрытием;
  • деревянное — настил с гидроизоляцией.

К сведению! На основание под полистирол запрещено применять в качестве гидроизоляционного слоя смеси, в состав которых входит растворитель или битумная мастика, под их воздействием утеплитель может разрушаться.

Как уложить пенополистирол под тёплый пол

Укладку полистирола в качестве подложки для тёплого пола следует начинать с черновой подготовке основания, оно должно быть ровное и чистое. При необходимости следует сделать заливку бетонной стяжки, если по технологии монтажа данного вида тёплого пола это требуется.

Затем, можно проложить специальную антиакустическую плёнку, она обеспечит отличную звукоизоляцию. Следующим слоем пирога идёт гидроизоляция, это может быть простая полиэтиленовая плёнка. Чтобы избежать растрескивания стяжки при нагревании, следует по периметру помещения проклеить демпферную ленту. После чего, начинаются работы непосредственно по утеплению.

Укладку полистирольных плит для тёплого пола рассмотрим на примере частного дома:

  • укладывается фанера или доски, на которые устанавливаются лаги, между ними размещается пенополистирол;
  • если утеплитель стелиться на на стяжку, то плиты кладутся в стык, а швы проклеиваются скотчем;
  • сверху маты накрываются пароизоляционным и гидроизоляционным материалом;
  • устанавливается дополнительная обрешётка поперёк лагов, она будет способствовать циркуляции вентиляции;
  • следующим слоем укладываются листы фанеры;
  • монтируются направляющие из реек, между которыми раскладываются нагревательные элементы;
  • если устанавливается водяная система, то на трубы укладывается фольга толщиной не менее 30 мкм, или вся площадь пола покрывается фольгированным полиэтиленом;
  • затем, сооружение закрывается фанерой или листами ОСП — при сухом способе, или производится заливка стяжки.

Теперь можно переходить к установке напольного покрытия.

Если в качестве утеплителя использовать плиты из пенополистирола с бобышками, то работы по монтажу тёплого пола значительно упрощается.

Нагревательные элементы необходимо размещать в пазах матов, и накрывать слоем гидроизоляции. Сверху которого устанавливается фанера, или производится заливка стяжки. И можно приступать к монтажу полового покрытия.

К сведению! При установке жёстких плит на утрамбованный гравий, необходимо использовать дополнительную защиту от влаги.

Методы крепления теплоносителя

Есть разные способы крепления теплоносителя при монтаже тёплых полов:

  1. Арматурной сеткой — трубы водяной системы или кабель электрической закрепляются к сетке стяжками из пластика. В местах изгиба нагревательных элементов на 90 градусов хватит 2 штуки стяжки, а при повороте на 180 нужно зафиксировать в 3 местах.

Преимущества данного метода — лёгкость при работе и надёжность. Минусы — в трудоёмкости процесса, возможности повреждения трубопрокатных материалов о сетку при эксплуатировании системы, если они изготовлены из металлопластика. Кроме того, может быть снижена теплоэффективность пола, из-за пустот между трубами и сеткой.

  • Пластиковыми направляющими — укладываются на пенополистирол, имеющий гладкую поверхность. Они могут быть различные по длине, соединяются путём вставления одного в другой, и закрепляются на застёжки. Перед их закреплением, следует определиться со схемой раскладки отопительных элементов. Для закрепления направляющих используются скобы из пластика, которые устанавливаются на полистирол.

Плюсы — быстрота и удобство раскладки трубопрокатных материалов, и надёжная их фиксация. Недостатки — усложнён процесс разметки и отсутствует сетка, чтобы армировать стяжку.

К сведению! Возможно изготовление направляющих своими руками из деревянных реек.

  • Плитами с бобышками — не требуется дополнительная фиксация, так как бобышки являются направляющими деталями, между ними прокладывается теплоноситель по любой схеме. Маты облегчают работу по монтажу трубопрокатных материалов, а бобышки защищают их от повреждений. Главный минус — высокая цена плит.
  • Использование липучки — новый способ крепления. Фиксация производится путём обматывания труб липучей лентой, которая прилепляется к основанию. Такой способ быстрый и удобный, не требующий дополнительной фиксации. Минус — усложняется укладка из-за отсутствия разметки, а также возможен незначительный сдвиг при ходьбе по полу.

Выбирать теплоизоляционный материал для тёплых полов, способ расположения и фиксации теплоносителя каждый может по своему желанию и финансовым возможностям.

Люди которые имеют опыт в работе с теплоизоляцией, могут сами осуществлять укладку экструдированного пенополистирола без фольги, креплений и разметки. Если же вы не обладаете данным опытом, и не надеетесь на свои силы, то стоит пригласить специалистов для установки теплой системы с подложкой из пенополистирола.

Видео материалы

Смотрите как произвести утепление стяжки перед укладкой.

Что такое пенополистирол? (с иллюстрациями)

Пенополистирол - это пенополистирол, обладающий определенными желаемыми свойствами благодаря своей структуре. Он необычайно легкий и плавучий, а также хороший изолятор от тепла и звука. Его можно использовать в качестве строительного материала или элемента дизайна, а также можно придать ему множество форм для различных домашних нужд.

Пенополистирол - хороший теплоизолятор.

В большинстве случаев пенополистирол белого цвета и состоит из небольших соединенных между собой шариков. Он производится путем объединения химических веществ этилена и бензола, чтобы получить соединение, известное как стирол. Затем стирол обрабатывают другими химическими веществами, которые вызывают полимеризацию молекул стирола или их объединение в длинные цепи. Эта реакция может продолжаться только до определенного момента, а затем прекращается. Получившимся шарикам дают остыть, а затем их очищают.

Пенополистирол технически пригоден для вторичной переработки.

После формирования и очистки бусинки должны быть расширены, что происходит в три основных этапа.Сначала шарики нагревают горячим воздухом или паром до тех пор, пока их плотность не станет трех процентов от первоначальной. Затем шарики охлаждают в течение 24 часов и формуют. Попав внутрь формы, они впрыскиваются паром низкого давления, который дополнительно расширяет шарики и сплавляет их. Когда форма остынет, пенополистирол готов к использованию или отгрузке.

Пенополистирол существенно отличается от аналогичного продукта, называемого экструдированным полистиролом.Экструдированный полистирол производится с использованием хлорфторуглеродов (ХФУ), которые, по мнению многих, вредны для баланса озона в атмосфере Земли. Пенополистирол изготавливается без этих соединений, что делает его более безвредным для окружающей среды. Однако оба продукта могут быть переработаны, как и любой пластик.

Еще одно важное преимущество пенополистирола, особенно для таких продуктов, как одноразовые стаканчики, состоит в том, что он очень экономичен.Производство пенополистирола требует гораздо меньше энергии, чем производство альтернатив на бумажной основе. Кроме того, он может производить гораздо меньше отходов, чем бумага. Например, при правильном сжигании из одной тонны (907 кг) полистирольных стаканов образуется только 0,2 унции (5,66 г) золы, тогда как из того же количества бумаги образуется 200 фунтов (90,7 кг) золы.

Также следует отметить, что пенополистирол не подвергается биологическому разложению.Некоторые считают это недостатком, но тот факт, что он химически инертен, делает его стабильным наполнителем, который помогает обеспечить безопасную и гигиеничную рекультивацию полигона. Несмотря на это, преобладающей тенденцией было сокращение объема пенополистирола и его переработка везде, где это возможно.

.

Какую выбрать толщину для заливки теплой воды под пол типа

Теплый пол не обходится без качественной бетонной стяжки, которая в эксплуатации выполняет множество функций. Но для этого следует ознакомиться с общей структурой теплого водяного пола, а также узнать, какие минимальные характеристики должны быть толщины стяжки над теплым полом, чтобы она соответствовала всем требованиям и технологиям.

обозначение

Толщина стяжки теплого пола повлияет на производительность всей системы, а также на ее работоспособность, учитывая внешние боковые нагрузки.Следует понимать, что слой должен быть оптимальным для производителя и соответствовать рекомендациям, если применима готовая строительная сухая смесь.

Если на основании пола будет устроена очень тонкая заливка бетона, то продержаться долго она не сможет. Кроме того, происходит очень быстрый нагрев поверхности и быстрый процесс охлаждения. Никакого добра она принести не может. Имея это в виду, особенно если в помещении постоянно возникает нагрузка не только от движения, но и от расположения мебели, минимальный фильтр под теплый пол очень быстро трескается и теряет внешний вид.Это все также повредит напольное покрытие, которое будет лежать сверху.

Толстый слой раствора для заливки бетона также не в состоянии показать все особенности системы теплого водяного пола. Утеплить такую ​​конструкцию будет очень сложно и проблематично. Возможен общий отказ конвейера в некоторых областях. Все это повлечет за собой большие финансовые вложения в оплату отопления. Ведь требуется большое количество энергии, чтобы тепло прошло через толстый слой стяжки, утепленный черновым полом в помещении.

Нельзя говорить о том, что существуют универсальные значения для устройства бетонной стяжки над системой теплого пола. Дело в том, что стоит учитывать некоторые факторы, такие как тип основания, конфигурация и площадь помещения, в котором работает, а также его назначение. Ведь нагрузка в жилых помещениях будет значительно меньше, чем в промышленных. Следовательно, в последнем случае слой заливки будет несколько больше.

В отличие от обычных стяжек

Обычная стяжка несколько отличается от стяжки теплого водяного пола.Дело в том, что в последнем в обязательном порядке следует устраивать компенсаторы. Даже на участках с небольшой площадью до 10 м 2 они должны присутствовать. Кроме того, должна получиться полоса амортизации, которая укладывается по низу стены. Это все, что вам нужно для компенсации теплового расширения бетонной стяжки при установке системы теплого водяного пола.

Для большой площади швов выполнены еще дальше. Здесь компенсирующая функция выполняется помимо ленты и утеплителя для стен.В этом случае теплоизоляция должна быть термоотталкивающей фольгой.

Количество стяжек для теплого пола

На первый взгляд очень странный вопрос о том, сколько стяжек следует рассчитать для системы теплых полов. Помимо черновой стяжки, выполняется оптимальная стяжка поверх трубы теплого пола. Последний слой ляжет в основу окончательной отделки пола в комнате. Альтернатива черновой стяжке - плита перекрытия. Но в этом случае он должен быть почти идеально ровным и без дефектов.В противном случае необходимо оформить выравнивающий слой.

Теплый водяной пол обязательно монтируется на основание без ошибок. Он должен быть ровным. Это необходимо для того, чтобы на последующем трубопроводе он равномерно распределялся в бетонной стяжке под чистовую отделку.

Компоненты теплого пола

Вся система теплого пола вместе со стяжкой определенной толщины, которая должна иметь оптимальные параметры. В этом случае сначала необходимо определить порядок, что обычно входит в базовую систему теплого пола и может быть толщина каждого слоя.

  • Изначально на ровном слое грунта устроена тепло- и гидроизоляция. Утеплитель из полистирола часто выбирается из-за качеств и характеристик, проявляемых в процессе эксплуатации. Обычно толщину теплого пола берут в пределах 80-100 мм. Именно этого слоя будет достаточно, чтобы согреться и направить его в нужное русло. Даже если он находится внизу подвала без отопления. Общая толщина теплого пола не повлияет на гидроизоляцию, так как она выполняется из очень тонкой полиэтиленовой пленки.
  • Изоляцию можно приобрести со специальными углублениями для трубопроводов. При его отсутствии можно устроить слой армирующей сетки или приобрести МАС, к которому очень легко изготовить монтажную трубу. У металлической сетки толщина армирования примерно такая же, как у сетки, и составляет примерно 4-6 мм.
  • Сама труба, которая используется для системы водяного теплого пола. Диаметр может быть совсем другим. Но рекомендуется брать не более 20-22 мм диаметром.Достаточно, чтобы система работала в полную силу.
  • Стяжка поверх теплого финишного покрытия полов. Здесь есть тонкости приготовления раствора и подбор подходящего материала (цемент, песок, добавки, пластификатор и ТД). В финишное покрытие добавляется и слой для крепления (клей), что относится к керамической плитке.

Состав заливки

Для начала стоит определиться с маркой цемента для раствора. Это должно быть М200-М300, в зависимости от назначения помещения.Кроме того, в состав могут быть включены пластификаторы, чтобы избежать появления трещин на поверхности после заливки, а также лучшего распределения основы. При устройстве под теплый пол толщина стяжки должна соответствовать всем требованиям и рекомендациям. Обычно это 50-70 мм. Начальный уровень заполнения идет сверху по трубопроводу. Оптимальные параметры могут посоветовать производители сухих смесей и для приготовления бетонного раствора. Этого также следует придерживаться при осуществлении установки.

Вместо пластификаторов могут применяться пластификаторы, а «народный» означает клей ПВА. Такие методы применялись 15-20 лет назад, когда технологии были еще не так развиты. Стоит отметить, что стоимость различных добавок сейчас не так велика, и вы можете позволить себе их покупать. Причем расход их невелик по объему бетонного раствора. В этом случае толщину стяжки труб теплого пола можно уменьшить еще больше, за счет улучшения прочностных характеристик.

минимальные параметры

Строительные нормы и правила устанавливают минимальные пределы производительности заливки бетонной стяжки.Это прописано в соответствующих документах. Но не все знают, какой может быть толщина стяжки для водяного теплого пола.

Минимальная толщина стяжки теплого пола должна быть 20 мм, при использовании в самовыравнивающейся смеси без армирующего слоя. Если это классическая бетонная стяжка, то не менее 40-60 мм с укладкой армирующей фибры. Правда, не всегда поверх труб кладут металлическую сетку. Это делается в том случае, если есть желание усилить всю конструкцию и создать надежную защиту трубопровода.

Минимальная стяжка водяного теплого пола Может рассматриваться для выполнения на черновом слое, когда основание выровнено и подогнано к горизонтальному уровню. Прокладка трубопровода в любом случае должна производиться на ровной поверхности без ошибок и дефектов. О минимальной толщине стяжки поверх теплого пола можно говорить, если совсем забыть об армировании. Этот слой нужно пропустить, чтобы не пострадало расстояние от пола до потолка. В настоящее время существуют альтернативы металлической сетке - фиброволокно.Добавление небольшого размера в подготовленный бетонный раствор, обеспечит такую ​​же производительность без увеличения слоя заливки.

Минимальный слой стяжки для теплого пола не укладывается в проявление нагрузок при эксплуатации. В нем можно установить громоздкую мебель, бытовую технику и т. Д. Все это может повредить поверхность и сделать кровельный пол непригодным. Итак, о чем следует знать, какая толщина стяжек теплого пола оптимальна, и в каких условиях он будет использоваться.

Обычно слоя стяжки теплого пола хватает на 60-70 мм укладываемого напольного покрытия любого типа. Будет показано все качество и оперативность в работе. Пол будет теплым в необходимом количестве при минимальных затратах на обогрев.

Пределы заливки стяжки

Толщина стяжки над водяным теплым полом может доходить до определенного параметра высоты, она выполняет свою функцию. Документировано ничего по этому поводу не прописано. Никто не советует выбирать толщину стяжки для теплого пола под плитку не больше 15-17 см.В противном случае вы просто потратите зря деньги на покупку материала и время на выполнение работ.

Минимальная толщина стяжки для водяного теплого пола не может быть обеспечена, при создании прочной конструкции. То есть стяжка поверх труб теплого пола выполняет роль фундамента дома. Аналогичная ситуация и в специализированных помещениях, утративших коммерческую ценность (гараж, склады, парковка).

Так как полы с водяным подогревом в основном проходят в частных домах, то здесь возникает еще одна проблема - проблемные почвы у основания.Если какие-то не могут считаться такими параметрами, то минимальная толщина стяжки над водяным полом. Дело в том, что в случае незначительного уровня заполнения со временем он может сломаться и повлиять на все составляющие конструкции, включая трубопроводы с напольным покрытием. Система монтируется на год, следовательно, необходимо соблюдать осторожность, чтобы создать необходимый стяжной слой поверх теплого пола.

При значительной шероховатости поверхности, больших перепадах высот следует подумать о выравнивании, которое необходимо ограничить.Все выступы сбиваются, а остальные части засыпаны сухим материалом. Подобные манипуляции проводятся перед монтажом теплого пола.

Использование заливного слоя позволяет снизить затраты на приготовление раствора бетонной стяжки. После заливки уровня на каждый сантиметр требуется определенное количество бетонного раствора. Чем больше этот показатель, тем выше затраты. Один кубический метр бетона для заполнения пространства в комнате 10 м 2 и стяжки для теплого пола толщиной всего 10 см.

Если вы не получили минимальную стяжку пола с подогревом, а достигли максимальных пределов, необходимо иметь в виду трудности и проблемы, которые возникнут при эксплуатации системы. Поверхность пола в помещении будет нагреваться очень долго. На все это будут потрачены средства, чтобы «разогреть» весь «пирог». Следовательно, эффективность теплого пола снизится до минимума или вообще ничего не будет. Так что при стяжке теплого пола оптимальная толщина должна быть отрегулирована по возможности.

Рекомендации экспертов

Каждый хочет получить ответ на вопрос, какая толщина стяжки водяного теплого пола наиболее подходит. Однозначного ответа здесь ни в коем случае получить не удастся. Для этого прорабатываем черновой пол, все требования к наполнению и эксплуатационные характеристики. Есть советы опытных мастеров, которые утверждают, что при следующих условиях можно добиться максимального эффекта от устроенной системы теплого пола.

  1. Минимальная толщина стяжки трубы теплого пола должна быть 50 мм.
  2. Размещаемые в стяжке пола коммуникации следует укладывать в защитную гофру. Минимальная толщина стяжки теплого пола, проходящей через гибкий шланг, должна быть 20 мм.
  3. Для отдельных помещений (коридор, ванная, кухня) минимальная толщина слоя заливки без армирования пола - 70 мм. Если есть возможность повысить прочность раствора с помощью различных добавок, уровень можно снизить до 40-50 мм. Здесь устройство помогает армирующему слою, укрепляет всю конструкцию.
  4. Для детских комнат толщина стяжки теплого пола принимается в пределах 50-60 мм. Дополнительно к общему «пирогу» добавлен звукоизолирующий слой.
  5. Все помещения могут иметь одинаковую толщину на теплой стяжке пола и плитке. Нижний уровень предусмотрен только для ванной, чтобы исключить возможность попадания воды при аварии проливного трубопровода.
  6. При выборе оптимальной толщины стяжки водяного теплого пола следует ориентироваться на дверные проемы. При устройстве требуется толстый слой дверных полотен индивидуальный заказ.Это, в свою очередь, ведет к увеличению затрат.

Определитесь со всеми стяжками для теплого пола, расценки позволяют грамотное отношение и обращение к специалистам. Имея опыт, они могут подсказать правильный выбор в конкретной ситуации. При самостоятельном исполнении без вреда для себя просмотреть видео и следовать рекомендациям производителей материалов, используемых для этого, не будет.

Видео:

Видео:

Видео:

Видео:

Видео:

.

РАСШИРЕННЫЙ ПОЛИСТИРОЛ | Определение

в кембриджском словаре английского языка Стоимость обычной теплоизоляции из пенополистирола может варьироваться от 7,50 фунтов стерлингов / кв.м для материала толщиной 100 мм до 17,50 фунтов стерлингов / кв.м для высококачественного материала толщиной 50 мм. Единственное, что можно было хранить, - это полые сферы из практически невесомого материала, такого как пенополистирол .

Эти примеры взяты из Cambridge English Corpus и из источников в Интернете. Любые мнения в примерах не отражают мнение редакторов Cambridge Dictionary, Cambridge University Press или ее лицензиаров.

Еще примеры Меньше примеров

Это запретило в течение одного года поставку детской мебели, содержащей более чем небольшое количество пенополиуретана и пенополистирола .Он ограничил количество пенополиуретана и пенополистирола , которые можно было использовать в обивке. .

ТЕПЛОИЗОЛЯЦИОННЫЕ СВОЙСТВА ПЕРЕДНЕГО ПОЛИСТИРОЛА В КАЧЕСТВЕ СТРОИТЕЛЬНЫХ И ИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ РЕЗЮМЕ

1 ТЕПЛОИЗОЛЯЦИОННЫЕ СВОЙСТВА РАСШИРЕННОГО ПОЛИСТИРОЛА В КАЧЕСТВЕ СТРОИТЕЛЬНЫХ И ИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ K. T. Yucel 1, C. Basyigit 2, C.Ozel 3 РЕФЕРАТ Лабораторные испытания изоляционных материалов на теплопроводность предоставляют полезную информацию о природе таких материалов; итоговые данные могут характеризовать эксплуатационные характеристики. В строительных установках изоляция продолжает работать при различных температурах, влажности и общих условиях сборки. Полная сборка теплоизоляции здания важна для контроля и прогнозирования долгосрочных характеристик конструкции в соответствии с результатами лабораторных испытаний.В процессе оценки проектных значений теплопроводности изоляционных материалов очень важно знать плотность, теплопроводность, класс материала, механические свойства изоляционных свойств. В этом исследовании экспериментальные испытания применяются для пенополистирола в качестве изоляционных и строительных материалов, которые являются однородными или близкими к гомогенным, пористыми, зернистыми или многослойными. Пластинчатый метод использовался для экспериментальных исследований в соответствии со стандартами. На этом аппарате определяют теплопроводность экструдированного полистирола.В этом аппарате, который может использоваться для материалов с теплопроводностью от 0,036 до 0,046 Вт / мК, плотность пенополистирола составляет от 10 до 30 кг / м 3. Результаты и экспериментальные методы обсуждаются в соответствии с хорошо известными стандартами. На пенополистирол влияют изменения в составе материалов в ячейках. КЛЮЧОВІ СЛОВА: плитный метод, пенополистирольные плиты, коэффициент теплопроводности. 1 Университет Сулеймана Демиреля, факультет архитектуры и инженерии, факультет гражданского строительства, Испарта, Турция 2 Университет Сулеймана Демиреля, факультет технического образования, Отдел строительного образования, Испарта, Турция 3 Университет Сулеймана Демиреля, факультет технического образования, Отдел строительного образования, Испарта / Турция

2 1.ВВЕДЕНИЕ Мировые запасы ископаемого топлива сокращаются день ото дня. Большая часть энергии уходит на отопление. Несмотря на то, что ресурсы ископаемого топлива сокращаются, в мире все еще есть достаточно ресурсов для использования в целях теплоизоляции или теплоизоляционных материалов. На этапе строительства, оценив эти ресурсы, можно уменьшить тепловые потери; можно получить здоровье и комфорт конструкции. Кроме того, тратя меньше энергии, выиграет индивидуальная и деревенская экономика. Неутепленные наружные стены являются наиболее важными зонами тепловых потерь.Для экономичного утепления выгоднее использовать основную массу наружных стен. За счет теплоизоляции внешней стены можно предотвратить 70% общих потерь тепла [1, 2]. Изоляция должна быть экономичной и предотвращать увеличение статической нагрузки здания. Анализ материалов из полистирола показывает, что при таком же сопротивлении теплопроводности он является наиболее экономичным и самым легким по весу среди полиэтиленовых материалов. [3]. Строительные изделия из полистирола являются подходящими материалами для строительных типов и стеновых систем.[4]. По этой причине выбран полистирол (см. Рис. 2), коэффициент использования которого в пластмассах, являющихся нефтехимическими продуктами, составляет 15% (см. Рис. 1). Это связано с тем, что полистирол имеет высокую изоляцию и малый вес, что приводит к небольшому увеличению статических нагрузок на здание. Этот материал имеет широкое применение в строительстве. Транспорт 45% Легкое тепло Электричество и энергетическая изоляция 42% Другое (неэнергетическое использование) 5% Пластмассы 4% Химическое / нефтехимическое сырье 4% Рис. 1. Пластмассы основаны на нефти [5].ПВХ 55% Полиолефины 15% Полиуретаны 8% Полистирол 15% Прочие 7% Рис. 2. Пластмассы в строительстве [5].

3 2. Твердый пенополистирол. Твердые пенополистирольные плиты - это изоляционные материалы, полученные путем формования распылением полимеризации стирольной смолы под давлением (экструдированный полистирол XPS) или прессования зерен полистирола в формы, расширяемые паром или в горячей воде, снова с помощью пара (расширенный Полистирол XPS) (см. Рис.3) [6, 7]. Рис. 3. Процесс производства пенополистирола (EPS) [5]. Неподвижный воздух имеет очень низкий коэффициент теплопроводности. Пеноматериалы из полистирола содержат почти 98% воздуха. Твердая фаза (пенный каркас), проводящая тепло, занимает 2% от общего объема. Кроме того, полистирол, передающий тепло, является очень изоляционным материалом. Из-за того, что пенополистирольный материал формируется из очень маленьких (1 м 3 пенополистирольного пенополистирола состоит из 3-6 миллиардов ячеек) закрытых ячеек: диаметром мм (см.рис.4), скорость теплопроводности за счет движения воздуха уменьшается с уменьшением объема ячеек, поэтому с точки зрения техники изоляции это хороший изоляционный материал. Лучше всего предотвратить тепловые лучи, если использовать большее количество ламинатов. Прежде всего; Обращает на себя внимание свойство, при котором удельный вес пенополистирола меньше. Вес пеноматериала, полученного различными способами с предварительным набуханием, варьируется от кг / м 3. Также величина теплопроводности изменяется в зависимости от плотности изготовления.Обычно стандартный пеноматериал, который используется на строительных площадках, имеет плотность кг / м 3 [3, 8]. Рис. 4. Микроструктура пониженной теплопроводности [5].

4 Наиболее распространенные области применения пенополистирола для теплоизоляции - строительство; стены, потолок, крыша и сборные элементы. Другие области применения - шумоизоляция, декоративные потолочные плиты и отверстия в бетонных формах.Предварительно набухший полистирол используется также при производстве легкого бетона и легкого кирпича. В технологии охлаждения пенополистирол используется для изоляции охлаждаемых складов, железнодорожных вагонов, судов, грузовиков, а также для изоляции труб. Долговечность этого материала при воздействии тепла зависит от периода и градуса Цельсия. Несмотря на то, что она непродолжительна к нагреванию до 100 C в течение короткого периода, она долговечна и может использоваться при температуре до C в зависимости от ее плотности в течение длительного периода [9].Принимая во внимание удельную массу, которая очень мала по сравнению с другими материалами, видно, что произведение прочности на сжатие пенополистирольного материала имеет важное более высокое значение [3]. Прочность пенополистирола под давлением и сопротивление деформации формы при тепловом воздействии увеличиваются параллельно с увеличением веса изделия (см. Рис. 5). Однако мощность всасывания воды меняется в зависимости от веса единицы и качества продукции (см. Рис. 6). Общие свойства EPS приведены в таблице 1.Прочность на сжатие (Н / мм 2) При% 10 деформации <% 2 Плотность деформации (кг / м 3) Рис. 5. Прочность на сжатие EPS в зависимости от плотности и деформации [10]. (Всасывание воды,% по объему) День 15 кг / м 3 20 кг / м 3 30 кг / м 3 Рис. 6. EPS водопоглощения [10].

5 Таблица 1. Технические характеристики пенополистирола [8]. Свойства и соответствующие стандартные значения пенополистирола Минимальная плотность (кг / м 3) (DIN 53420) Классификация строительных материалов (DIN 4102) B1 Трудновоспламеняющиеся лаборатории по теплопроводности.Значение (Вт / мК) (DIN 52612) Значение измерения (Вт / мК) (DIN 52612) Прочность на сжатие при 10% деформации (DIN 53421) Прочность на сжатие при деформации менее 2% (DIN 53421) Прочность на сдвиг (Н / мм 2 ) (DIN 53427) Сопротивление изгибу (Н / мм 2) (DIN 53423) Предел прочности (Н / мм 2) (DIN 53430) Модуль упругости E (Н / мм 2) Прочность формы в зависимости от температуры в течение короткого периода (C) ( DIN 53424) В течение длительного периода 5000 Н / мм 2 (C) (DIN 53424) В течение длительного периода Н / мм 2 (C) (DIN 18164) Коэффициент теплового расширения (1/4) Удельная теплоемкость (Дж / кг · К) (DIN 4108) Водопоглощающая способность за 7 дней при полном погружении в воду DIN (% объема) 1 год Диффузия водяного пара (г / м 2.г) (DIN 53429) Коэффициент сопротивления диффузии пара (µ) (DIN 4108) 20/250 30/250 40/250 EPS, который используется для строительства, изготавливается в форме плит. Также продается с целью использования в декоративных целях. Удельный вес при производстве варьируется от кг / м 3, а производственная плотность составляет 10-12, 12-14, 14-16, 16-18, 18-20, 20-22, 22-24, 24-26, 26-28. , кг / м 3 в единицах веса. Производственные размеры EPS составляют 400x100x50 см, а с использованием технологии горячей проволоки (мин. 1 см) он может быть изготовлен любой желаемой толщины.Сегодня в мире производится 2,2 миллиона тонн сырья EPS в год, а количество и количество теплоизоляционных материалов, потребляемых в Турции и Европе, показано на рис. 7.

6% Потребление Минеральная вата EPS XPS Полиуретан Другие страны Европы Турция Рис. 7. Положение EPS в области применения теплоизоляционных материалов [8]. 3. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ Виды строительных и теплоизоляционных материалов совершенствуются с постоянным развитием технологий.При тепловых измерениях использование коэффициента теплопроводности, приведенного в литературе для аналогичных материалов, может дать неверные результаты. По этой причине необходимо определять все физические свойства новых материалов, такие как удельный вес, вязкость, удельная теплоемкость, коэффициенты теплопроводности [11]. Наиболее важными и наиболее часто используемыми методами испытаний твердых веществ являются: Доска с методом защитного нагревателя, сферическая оболочка, цилиндрический и временный режим и метод пластины. В данном исследовании для определения тепловых свойств пенополистирольных плит используется пластинчатый метод, который представляет собой определение коэффициента теплопроводности с учетом теплопроводности.Наиболее важные преимущества этого метода: Простые в исполнении, используемые образцы имеют форму куба и обеспечивают полное распараллеливание с горизонтальными измерениями, где наиболее важным недостатком является то, что теплопроводность образцов не может быть определена во влажном состоянии, и требуется кондиционирование. Теплопроводность и тепловые переходы могут быть определены в состоянии прямой пластины, однородном или почти однородном пористом, волокнистом, зернистом, одном или нескольких слоистых образцах. В пластинчатом методе коэффициент теплопроводности увеличивается с увеличением угла наклона к горизонтали.Использование пластинчатого метода для определения коэффициента теплопроводности будет уместным, потому что EPS формируется из очень маленьких ячеек, соединяющихся из зерен, и его используют при строительстве в горизонтальном и / или вертикальном положении. Этот метод бесполезен для материалов; теплопроводность более 2 ккал / м · ч С (2,3 Вт / м · К). Из изделий из пенополистирола, для которых определены коэффициенты теплопроводности, выбраны пять типов удельного веса (10, 15, 20, 25 и 30 кг / м 3).

7 3.1. Экспериментальное оборудование и приложения. Для определения коэффициента теплопроводности используется устройство, которое определяет теплопроводность методом пластин типа Feutron (см. Рис. 8), и это устройство может измерять один образец в течение каждого периода испытаний. Размеры нагревательной пластины составляют 250x250 мм, а ее толщина может достигать 70 мм. Холодильная плита воды и электричество горячей плиты обеспечиваются от подключений, которые связаны с сетями воды и электричества. Оборудование состоит из четырех основных частей.Эти; фиксированная нижняя пластина, подвижная верхняя пластина, защитный лист и измерительные приборы. Измерительные приборы состоят из трех основных частей: термометры, электрический счетчик и микрометры для измерения толщины (0,001 мм). Электрическая линия и холодная вода Рис. 8. Схема оборудования, измеряющего теплопроводность пластинчатым методом [12]. 1- Образец 2- Нагревательная пластина 3- Охлаждающая пластина 4- Защитная горячая пластина 5- Термопара 6- Термометры охлаждающей пластины 7- Термометры защитной горячей пластины 8- Микрометры для измерения толщины 9- Термостат охлаждающей пластины 9- Терморегулятор для защитного термостата 10- Терморегулятор для переменного преобразователя 12- Двухточечный регулятор 13- Цифровой вольтметр электрического счетчика 15- Термометр холодной воды 16- Клапан холодной воды 17- Расходомер 18- Короткий циркуляционный клапан.

8 Нагревательная пластина нагревается электричеством, степень нагрева регулируется. Пластина охладителя охлаждается сетевой водой, а степень охлаждения регулируется с помощью лопасти по количеству протекающей воды. Теплота сетевой воды измеряется градусником. Также с помощью термометров на более теплой и более холодной пластинах, температура этих пластин контролируется. Перед началом эксперимента образцы сушат (24 часа при 105 o C) до неизменного веса при нормальном атмосферном давлении (1x10 5 Па).Практически образцы пенополистирола (в основном пластмассы) теряют свои физические свойства при 105 ° C, поэтому проводят 24-часовую процедуру сушки при 24 ° C. Рассчитываются количества влажности по объему (n v) и по весу (n г) образцов. После подготовки образцов для измерения в первую очередь необходимо определить количество рабочей мощности. Уровень мощности привязан к толщине образца и приближенному коэффициенту теплопроводности. Используя диаграмму, представленную на рис. 9, на график наносят приблизительное значение коэффициента теплопроводности, взятое из стандарта DIN 4108, и величину измеренной толщины.По этим значениям уровень мощности считывается с данной диаграммы. Тогда коэффициент Ki получается из таблицы 2 в соответствии с найденным уровнем мощности λ = λ = 1,3 λ = λ = 0,80 λ = λ = λ = λ = λ = λ = Толщина образца (мм) Рис. 9. Диаграмма для определения мощности уровень при фиксированной разнице температур составляет 10 o C [12]. Уровень мощности Таблица 2. Уровень мощности и коэффициенты Ki [12]. Источник питания Ki * Источник питания Ki * * Ki Коэффициент уровня мощности содержит измеренную величину площади, коэффициент счетчика C и коэффициенты, которые переводят wh в ккал.

9 После выполнения необходимых регулировок образец помещают на нижнюю фиксированную пластину, полностью параллельную горизонтали, и измеряют толщину в четырех углах образца с помощью микрометров для измерения толщины. В процессе эксперимента электрический ток, проходящий от электрического счетчика, и величины на термометрах защитных нагревательных пластин измеряются каждые полчаса всего 9 раз.После завершения эксперимента толщины в четырех углах образца снова измеряются с помощью микрометров для измерения толщины и вычисляются средние из этих значений. Путем определения количества электричества (wh / h), проходящего в единицу времени, ток (q) рассчитывается с помощью уравнения 1 и с использованием коэффициента уровня мощности (Ki). Разница тепла (t) между двумя поверхностями рассчитывается путем усреднения значений термометра горячих и холодных пластин. По уравнению 2 коэффициент предварительной теплопроводности (λ 10.ö) сухого образца рассчитывается с использованием найденных значений и поправочного коэффициента (ω), относящегося к оборудованию. Поскольку материал будет использоваться в нормальных погодных условиях, при нормальном атмосферном давлении, значение теплопроводности (λ 10k) в сухом состоянии рассчитывается по уравнению 3 для средней теплоты 10 ° C путем добавления количества, равного влажности по весу. количество, которое оно в нем содержится. Добавляя 10% расчетного значения коэффициента теплопроводности к самому себе, значение, которое будет использоваться для расчета тепла (Z), чтобы использовать этот материал в зданиях по уравнению 4 [14].q = wh / h.ki (1) q.d o λ 10.ö = ккал / мч C t q. ω (2) λ 10.k = λ 10.ö / [1+ (нг / 100)] (3) λ h = λ 10.k + Z (4) 4. РЕЗУЛЬТАТЫ ИСПЫТАНИЙ И ОБСУЖДЕНИЕ По окончании исследований и расчеты, выполненные для каждой единицы веса, достигаются до значений, указанных в таблице 3. Значения λ 10.ö, приведенные в таблице 3, являются средними арифметическими для образцов. Изменение расчетного значения теплопроводности (λ h), полученное экспериментально, представлено на рис. 10. Установлено, что удельный вес и коэффициент теплопроводности изменяются обратимо.Форма кривой изменения полиномиальная, а коэффициент регрессии равен 1. (y = 2x10-05 x x, R 2 = 1). Как видно на рис. 6, только одно значение (для 15 кг / м 3, Вт / м · K) дано для пенополистирольных плит из твердого пенополистирола в TS 825 и DIN 4108; для других плотностей не определено, как рассчитывать, или значение не приводится. В PrEN 12524 для продуктов, которые не проводились, дается W / mK, а удельный вес и коэффициент теплопроводности изменяются полиномиально параллельно количеству испытаний для надежности% 50 (R 2 =) и% 90 (R 2 = ) приведены два различных расчетных значения теплопроводности.Согласно PrEN 12524, эти два значения при 23 C одинаковы для относительной влажности% 50 и% 80.

10 Группа плотности (кг / м 3) Номер образца Сухая масса образцов, кг Таблица 3. Расчетные значения коэффициента проводимости для образцов из пенополистирола (a) кг / м 3 Плотность поверхности a. d (кг / м 2) E общее потребление электроэнергии (кВт / ч) Z общее время (час) t разница тепла Ток E.Ki Z Среднее значение первой и последней толщин - d (м) λ 10.ö λ 10.k Ккал / мч C λ 10.k + Z Расчетное значение коэффициента проводимости (λh) Ккал / мч C Вт / мK

11 Расчетное значение коэффициента проводимости (Вт / мК) Вес агрегата (кг / м 3) AP = 50 P = 90 λ h B λ h ABP = 90 P = 50 Рис. 10. Расчетные значения коэффициента теплопроводности пенополистирола, найденные тесты и по стандартам. A: это расчетное значение коэффициента теплопроводности для продуктов (EPS) любых проведенных испытаний, приведенных в PrEN [15].B: Расчетное значение коэффициента теплопроводности, используемое для плит из пенополистирола с плотностью более 15 кг / м 3 согласно TS 825 и DIN 4108 [13, 16]. P = 50 - P = 90: Расчетные значения коэффициента теплопроводности, которые будут использоваться для продуктов (EPS) с уровнями значимости 50% и 90%, указанными в PrEN [15]. λ h: Расчетное значение коэффициента теплопроводности, полученное при испытаниях. По результатам эксперимента, хотя расчетные значения коэффициента теплопроводности пенополистирола с удельной массой кг / м 3 оказались ниже предельных значений, указанных в TS 825, DIN 4108 и PrEN 12524, за исключением значения, указанного в PrEN для образцов любого Проведенные испытания показали, что ППС с удельным весом 15 кг / м 3 больше других значений.

12 4. РЕЗУЛЬТАТЫ При определении значений теплопроводности строительных материалов, которые будут использоваться для теплоизоляции здания, знание физических свойств материалов (структура, прочность на кручение и т. Д.) И использование соответствующих методик позволит получить более точные результаты. Определение коэффициентов теплопроводности после этапа производства строительных материалов заставит производителя производить высококачественные материалы, а также будет удовлетворять соответствующие экономические условия за счет уменьшения толщины изоляционных материалов, используемых в зданиях. При испытаниях изделий из пенополистирола установлено, что коэффициент теплопроводности меняется обратно с плотностью.Таким образом, можно сделать вывод, что уменьшение коэффициента теплопроводности обеспечивается увеличением количества зерен EPS в единице объема, что приводит к уменьшению объема пустот между зернами, а также приводит к увеличению количества пор в зернах EPS. Однако это снижение коэффициента теплопроводности действительно до оптимального значения, поскольку уменьшение общего количества пустот в EPS приведет к увеличению плотности, таким образом, значение коэффициента теплопроводности может увеличиться.В литературе и стандартах приводится только одно значение коэффициента теплопроводности пенополистирола, и предлагается любой метод изменения этого значения в зависимости от веса единицы. Будет более уместно изменить значение коэффициента теплопроводности, как это описано в PrEn, в зависимости от количества образцов, чтобы разработать новые и лучшие материалы, используя результаты, полученные в ходе экспериментов, с использованием значения, рассчитанного путем умножения значения коэффициента теплопроводности на безопасность. коэффициент.СПИСОК ЛИТЕРАТУРЫ 1. Брайант С., Люм Э. Система Брайанта Уоллинга. Бетон 97 для будущего, 18-я конференция, проводимая раз в два года, Аделаидский конференц-центр, Олдер, Г., St Century Challenge. Компьютерная графика (ACM), 33 (3), Эдремит, А., Проведение экономического анализа изоляционных материалов путем определения физических свойств; Магистерская работа, Стамбульский технический университет Йылдыз, стр. 114, Турция. (На турецком языке) 4. Манселл, У. К., Стенные конструкции с фиксированным креплением революционизируют жилищное строительство. Бетонное строительство, The Aberdeen Group, 12 стр., Соединенные Штаты. 5. Фиш, Х., Июль. Пластмассы - инновационный материал в строительстве, EUROCHEM - Конференция 2002 / TOULOSUE (30 апреля Линч, Г., Бой с холода. Компьютерная графика (ACM), 33 (3), Шрив, Н., Бринк, AJ, (Перевод на турецкий язык Чаталташ, И. А.), Chemical Process Industries, стр. 350, Стамбул, Турция. 8. Общество производителей полистирола, (30 апреля 2003 г., Стамбул, Турция. (На турецком языке) 9 Йылмаз, К., Колип, А., Касап, Х., Панели из несущего полистирола с превосходной изоляцией, помещенные в стальную сетку, Симпозиум по изоляции 97, стр., Элазыг, Турция.(На турецком языке)

13 10. Анонимный, жесткий пенопласт (EPS) в теплоизоляции. Общество производителей пенополистирола, стр. 14, Анкара, Турция. (На турецком языке) 11. Какач, С., Введение в Теплопроводность Тома-I (Теплопроводность). Техническое издательство, стр. 310, Анкара, Турция. (На турецком) 12. Аноним. Справочник по испытательной аппаратуре типа Feutron (определение коэффициента теплопроводности пластинчатым методом).13. DIN 4108, 1981, Теплоизоляция в зданиях, (DIN-Norm), стр.48, Берлин, Германия. 14. TS 415, Расчетное значение теплопроводности и теплового сопротивления для архитектурных и строительных целей (с использованием метода пластин). Турецкий институт стандартов (TS), стр. 12, Анкара, Турция. (На турецком языке) 15. PrEn 12524, 1996, Строительные материалы и продукты, Энергетические свойства, Табличные проектные значения, Европейский комитет по стандартизации, 12 стр., Центральный секретариат: Rue De Stassart 36, Брюссель. 16.TS 825, Теплоизоляция в строительстве. Турецкий институт стандартов (TS), стр. 62, Анкара, Турция. (На турецком языке)

.

Смотрите также