Батарея для солнечной панели


Рейтинг лучших аккумуляторов для солнечных батарей

Время прочтения: 5 мин

Дата публикации: 18-02-2022

Зеленая энергетика — это одно из самых актуальных и важных современных веяний. Вырабатывание электроэнергии тепловыми и атомными электростанциями влечет за собой выбросы в атмосферу и отходы соответственно, что усугубляется постоянным ростом потребления электричества. Очень популярным альтернативным источником электроэнергии являются солнечные панели. Их весомое преимущество заключается в эргономичности: любой житель частного сектора может установить панели на крышу дома, значительно снизив затраты на электроэнергию. Среди жителей Киева, Харькова, Днепра, Одессы и других городов Украины приобретает популярность так называемый «зеленый тариф», позволяющий осуществлять продажу выработанной электроэнергии. В нашем интернет-магазине даже доступны специальные стабилизаторы напряжения, предназначенные для работы сети совместно с солнечными панелями, которые можно купить с доставкой по всей стране.

Солнечные панели при достаточном количестве света вырабатывают постоянный ток, который для работы бытовой техники непригоден. В связи с этим в цепь добавляется инвертор, осуществляющий преобразование постоянного тока АКБ в переменный с параметрами 220В 50гц. Промежуточным звеном между инвертором и панелями могут выступать специальные аккумуляторы для солнечных панелей, накапливающие электричество тогда, когда нагрузка потребляет меньше, чем вырабатывается. Рынок аккумуляторных батарей очень обширен и их разнообразие может запросто запутать неосведомленного потребителя, которому придется обращаться к отзывам покупателей и рыться в тоннах информации, чтобы найти лучший аккумулятор для солнечных батарей. Мы же предлагаем Вам наиболее оптимальный вариант: вкратце ознакомиться с типами АКБ, после чего проконсультироваться с нашими специалистами, которые помогут купить лучшие аккумуляторы для солнечных батарей по демократичной цене с доставкой до Вашего города.

О важности правильного выбора АКБ для солнечных батарей

Ни для кого не секрет, что аккумуляторная батарея — это самый обыкновенный расходник. Но относиться к нему как к таковому неправильно, потому что качественная и емкая АКБ — удовольствие не из дешевых. Неправильная эксплуатация или неправильный выбор может быстро привести в негодность даже формально лучшие аккумуляторы на рынке, которые попросту не подходят для конкретных целей.

Можно запросто привести конкретный жизненный пример. Некоторые пользователи умудряются для систем резервного питания и даже для солнечных батарей устанавливать обычные автомобильные свинцово-кислотные аккумуляторы. И пусть даже это качественная батарея от BOSCH, долго ей жить в таких условиях не придется. Традиционные автомобильные свинцово-кислотные аккумуляторы предназначены главным образом для кратковременных лавинообразных нагрузок (работа стартера) с последующим восстановлением заряда по мере езды. Допускать разряд свинцово-кислотной АКБ с жидким электром не желательно даже до уровня 40-50%. А теперь представьте режим работы аккумулятора для солнечных батарей. Днем, когда потребление минимальное и почти никого нет дома, батарея или аккумуляторный блок заряжается энергией солнца. Наступает вечер, нагрузка растет, а выработка — падает. Аккумуляторы начинают терять заряд до значений, которые для обычных стартерных батарей ну просто недопустимы. Это и называют неправильной эксплуатацией. Именно поэтому лучший аккумулятор для солнечных батарей - это в первую очередь тот, который подходит по типу и основным параметрам, и лишь потом выпущенный надежным производителем. В интернет-магазине «Вольтмаркет» доступен впечатляющий ассортимент гелевых аккумуляторов для автономных систем и солнечных батарей, которые можно купить по демократичной цене с доставкой в Киев, Харьков, Днепр, Одессу и другие города Украины.

Аккумуляторы для солнечных панелей должны обладать хорошим циклическим ресурсом и терпимостью к глубоким разрядам. Тяговые гелевые АКБ полностью удовлетворяют этим условиям благодаря применяемым при их производстве технологиям. Рассмотрим их поближе.

Несмотря на то, что «гелевый» - это конкретный тип аккуумуляторов, очень часто так называют группу АКБ, в которую входят батареи как с гелевым, так и с абсорбирующим электролитом. У них есть общие черты, благодаря чему и эксплуатационные характеристики отличаются не радикально. Первое и самое важное отличие гелевых аккумуляторов для солнечных батарей от обычных свинцово-кислотных аналогов – это форма содержания электролита. Сам состав электролита не изменен, либо изменен незначительно путем использования различных примесей, но, что более важно, он не находится в ячейках в жидком виде. В батареях GEL VRLA это достигается путем загущения электролита до гелеобразной консистенции добавлением различных кремниевых и других соединений. Как результат – получается густая пористая масса. В АКБ AGM VRLA используется обыкновенный жидкий электролит, но он абсорбирован специальными плотно уложенными между электродами пористыми стекловолоконными прокладками.

В обоих случаях содержимое АКБ находится в герметичном корпусе. Что гель, что абсорбированный жидкий электролит обеспечивают такой процесс, как рекомбинация газов. Испарения воды, состоящие из ионов кислорода и водорода, не выходят наружу, а рекомбинируют в воду. Это избавляет пользователя от необходимости долива дистиллированной воды в течение всего срока службы батарей. Именно поэтому их называют необслуживаемыми.

Что, помимо необслуживаемости, дает тяговым гелевым аккумуляторам улучшенная форма содержания электролита? Почему именно они лучшие для солнечных батарей? Начнем, пожалуй, с самого важного – с циклического ресурса. Для традиционных АКБ этот показатель очень мал ввиду слабой переносимости сильных разрядов. Опускать уровень заряда ниже 50% уже вредно, а ведь при эксплуатации аккумулятора для солнечных батарей могут возникать куда более глубокие разряды. Аккумуляторы AGM могут безболезненно переносить разряд вплоть до 30%, а GEL – и того лучше. Даже будучи разряженным до нуля, АКБ класса GEL запросто выйдет из глубокого разряда без каких-то заметных последствий. Благодаря переносимости к сильным разрядам, аккумуляторы AGM и GEL могут служить в циклическом режиме более пяти лет. Физически такие свойства обычно обосновываются плотным прилеганием электролита ко всей поверхности электродов и отсутствие испарений, что практически исключает возникновение коррозии. Помимо циклического ресурса и переносимости к глубоким разрядам, тяговые АКБ прекрасно справляются с работой в условиях низких температур и имеют наименьший саморазряд.

Часто пользователи стоят перед вопросом, какой из этих двух типов аккумуляторов лучший для солнечных батарей. Оба, конечно же, хороши, однако и отличия имеются. В АКБ GEL несколько выше циклический ресурс, такие батареи наименее чувствительны к глубоким разрядам, однако в противовес этому AGM предлагает лучшую токоотдачу и меньшую чувствительность к точности заряда. Конечно, довольно трудно обобщенно сравнивать классы батарей, так как эксплуатационные характеристики во многом зависят от того, какие технологии применяет производитель. Два аккумулятора от разных производителей, которые в цифрах идентичны, могут выдавать абсолютно разные показатели. Именно поэтому при выборе аккумулятора для солнечных батарей важную роль играет знакомство с достоинствами того или иного производителя через отзывы и обсуждения других покупателей. Также своими знаниями с радостью поделятся специалисты интернет-магазина «Вольтмаркет», где Вы можете купить лучшие АКБ с доставкой в Киев, Харьков, Днепр, Одессу и другие города Украины.

Определившись с типом аккумулятора, который, на самом деле, не является критичным (подойдет как AGM, так и GEL), пора выбрать характеристики и количество батарей. Как Вам наверняка известно, емкость цепи можно наращивать путем параллельного соединения аккумуляторов, однако на практике при использовании с солнечными панелями поступают несколько иначе. Солнечный инвертор для осуществления преобразования DC-AC требует подачи на вход определенного напряжения постоянного тока. Вам следует добиться этого номинала путем последовательного соединения 6 или 12-вольтовых аккумуляторов. Солнечный инвертор требует 48 вольт? Что же, прекрасно подойдет сборка из четырех соединенных последовательно 12-вольтовых аккумуляторов B.B. Battery MPL110-12/B6 емкостью 110 Ач каждая, либо из восьми 6-вольтовых АКБ Ventura DC 6-200 Solar емкостью 200 Ач. Проще простого! При подключении обязательно руководствуйтесь инструкциями касательно допустимых расстояний и сечения силового кабеля.

Как видите, в выборе аккумулятора для солнечных батарей ничего трудного нет. Главное помнить, что лучший и, скорее всего, единственный верный вариант – это тяговые гелевые АКБ. Также Вам подойдет новинка на их основе - карбоновые аккумуляторы. Вы может использовать традиционные автомобильные батареи, однако их быстрый износ при работе в циклическом режиме приведет к скорой необходимости замены. Установив качественные тяговые гелевые аккумуляторы для солнечных батарей, Вы можете забыть об обслуживании аккумуляторного блока на 5-10 лет, наслаждаясь результатом работы «зеленых технологий».

Если Вы плохо ориентируетесь в каком-либо вопросе, никогда не будет лишним проконсультироваться с нашими специалистами, после чего выбранную модель аккумулятора можно купить в требуемом количестве по выгодной цене с доставкой в Киев, Харьков, Днепр, Одессу и другие города Украины.

АКБ для солнечной электростанции - Pulsar



В последнее время возросло количество солнечных электростанций, параллельно вырос и спрос на батареи, потому что многие хотят получить автономию, независимость от сети, и нужно иметь буфер, а это аккумуляторные батареи

Акуммуляторы – вещь недешёвая, и какого бы типа они ни были, могут стоить до половины всей системы электропитания в проектах придомовых солнечных электростанций. Вместе с тем, такое утверждение относится прежде всего к автономным системам; для других вариантов аккумуляторов требуется меньше, а иногда они и вовсе не нужны. Всё зависит от того, каких целей потребитель стремится достичь при построении домашней солнечной станции: полной автономии, создания системы резервного питанияили заработка на поставке электроэнергии.

Отметим сразу, что в плане экономии средств на энергопотреблении солнечная электростанция (имеем в виду, прежде всего, автономную) не самый рациональный путь. Если у вас есть сеть, то даже при нынешних тарифах выгоднее все же использовать сеть. Однако, мотивами создания собственной СЭС может быть необходимость в энергетической независимости, сознание причастности к новейшим технологиям и коммерческие перспективы в будущем (возможно, недалеком – с учетом постоянного роста тарифов).

Какие солнечные электростанции бывают

Среди солнечных электростанций для домашнего хозяйства мы можем выделить три типа систем. Прежде всего, это сетевые станции (on-grid), где выработка идёт напрямую на внутридомовые нагрузки, а излишки (либо же вообще вся выработанная энергия) отправляются в сеть, для чего заключается договор «зеленого» тарифа. В такой электростанции аккумуляторы отсутствуют. А зависимость от сети сохраняется, ведь ею придется воспользоваться при ненастной погоде, да и отдавать электричество можно, только когда внешняя сеть под напряжением. 

Второй вариант – это гибридная электростанция, система, когда есть и сеть, и аккумуляторы. Такие станции делают потребителя независимым: у нас есть автономия, определенный запас энергии в аккумуляторах, также мы используем энергию солнечных батарей (СБ), но при этом мы пользуемся и сетью, берем из нее, сколько нужно, и можем продавать энергию в ту же сеть. Как правило, аккумуляторы ставятся на гибридные объекты мощностью до 30 кВт.

И третий вариант – это автономная система, когда у нас вообще нет сети: удаленное или, как говорится, «островное» расположение, а также проблемы с подключением сети или нехватка мощности из-за квотирования поставщиком электроэнергии. Под автономными станциями также можно подразумевать и такие, которые снабжены нормальным подключением к сети, но отдача выработанной СБ электроэнергии в неё не производится (off-grid). В автономной солнечной станции аккумуляторы играют самую ответственную роль, и здесь нужно особенно тщательно думать и считать, какие аккумуляторные батареи (АКБ) выбирать.

Схема сетевой солнечной электростанции

Нам нужно, чтобы они полностью обеспечили потребности домохозяйства в электроэнергии. Поэтому должен быть достаточный запас по ёмкости, а что самое важное – аккумуляторы должны обладать хорошим циклическим ресурсом (особенно это важно для «островных» СЭС). В экономическом плане это большие инвестиции, и, учитывая лишь износ аккумуляторов, можно понять, что эти деньги мы едва ли «отобьем». Зато приобретаем комфорт и независимость, а при отсутствии альтернатив «торг и подавно не уместен». Заметим также, что для автономной СЭС может потребоваться и даже необходим (на случай длительной непогоды, особенно зимой) еще и резервный источник электропитания – бензо-, дизель- или газовый генератор, который сможет подзарядить аккумуляторы.

Выбор батареи для собственной СЭС

Существует несколько типов аккумуляторных батарей, применяемых с солнечными электростанциями. Это, как правило, свинцово-кислотные, либо литиевые. Реже используются никель-кадмиевые аккумуляторы, которые могут быть востребованы по климатическим причинам (большие перепады температур) или в тяжелых условиях эксплуатации. Никель-кадмиевые батареи неприхотливы, выдерживают высокие и низкие температуры и незаменимы, например, на станциях газо- и нефтеперекачки в пустыне или на морских платформах. Однако в средней полосе более традиционны первые две разновидности – свинцово-кислотные и литиевые. (С наиболее распространенными типами аккумуляторных батарей, их конструкцией и параметрами можно познакомиться в журнале «Украина Электро», 2018, № 4-5).

Схема гибридной солнечной электростанции

Схема автономной солнечной элетростанции

Гелевая батарея для солнечных электростанций 
производства EverExceed

Выбирая АКБ для солнечной электростанции, нужно исходить из бюджета, а уже в рамках этого бюджета выбирать наиболее выносливую батарею. Причем опять же нужно учитывать режим эксплуатации. Важный параметр – ёмкость, однако едва ли не важнее показатель цикличности, если речь идет о работе в циклическом режиме в условиях автономии, то есть частых циклов заряда-разряда. Если батарея планируется для работы в буферном режиме (используется для поддержки, включается лишь при пропадании сети или непогоде, а при достижении установленного минимального напряжения, при наличии сети, отключается), то требования по цикличности более умеренны. Впрочем, бывают разные схемы энергоснабжения, и при выборе АКБ их следует учесть.

Свинцово-кислотные (СК)

В этой группе предлагается несколько типов батарей. Начиная от стартерных, которые порой (правда, таких случаев уже немного) также предлагают в качестве «солнечных». Это яркий пример того, как делать не нужно. Продержаться в рабочем режиме такие батареи смогут лишь короткий промежуток времени, поскольку им нельзя давать глубокий разряд (при глубоком разряде они быстро деградируют, осыпаются пластины). Если наращивать ёмкость и количество этих батарей, то это уже вопрос объема, места, да и в итоге оказывается значительно дороже. Кроме того, такие батареи при работе выделяют газы и требуют вентиляции. Одним словом, если мы хотим комфортно жить и не бросать деньги на ветер, такой выбор самый неподходящий. Все-таки у каждого типа батарей свое назначение.

Самый лучший выбор для «солнца» из герметизированных необслуживаемых (VRLA) СК-аккумуляторов – AGM либо GEL (гелевые). Лучше, конечно, гелевые: у них при прочих равных условиях более высокий технический ресурс, и они менее прихотливы к глубоким разрядам. Кроме того, поскольку наше солнечное приложение не предполагает сверхмощных токов разряда и чаще всего разряд происходит малыми и средними токами, гелевые батареи отлично подходят для этих случаев. Даже с учетом того, что они чуть дороже, чем AGM, они того стоят.

Гелевые батареи также более выносливы в температурном плане, при высоких температурах чувствуют себя лучше, чем AGM. К примеру, у компании CSPower (АКБ поставляются на рынок Украины под брендами Pulsar и NetPRO Battery) есть серия гелевых высокотемпературных аккумуляторов HTL, имеющих утолщенные мощные пластины со специальными карбоновыми добавками. Эти добавленные компоненты увеличивают выносливость при работе в циклическом режиме и при высоких температурах. С ними аккумуляторы серии HTL могут работать при температуре +35-40°С так же, как обычные АКБ при температуре +20-25°С. А при 80-процентном разряде такие батареи с добавками способны вынести порядка 800 циклов (детальнее о влиянии добавок в свинец читайте во врезке «Чудодейственные компоненты»).

Чудодейственные компоненты

Технологии производства аккумуляторных батарей не стоят на месте. Новшеством последнего времени стало включение в состав пластины свинцово-кислотных АКБ в определенных пропорциях различных добавок для улучшения некоторых характеристик элементов питания. Среди улучшенных параметров можно назвать возможности по отдаче, механическую прочность, температурный диапазон, устойчивость к износу, осыпанию, коррозии, увеличение срока службы, наконец.

В состав активных материалов пластин может добавляться, например, кальций, олово, иногда селен, а также карбон. Олово в качестве добавки, а также карбон, напыляемый на пластины, заметно сильно влияют на циклический ресурс. На рынке уже сейчас есть «свинцово-карбоновые» батареи с декларируемым повышенным циклическим ресурсом (до 1500…2000 циклов разряда глубиной 80…100%). Однако, подтверждение указанных возможностей требует практической проверки и определенного  времени.

Благодаря добавкам расширяется и температурный режим эксплуатации батарей. Это может быть интересно и для солнечных приложений, и для телекоммуникаций, где есть выносные объекты (базовые станции). Например, уже во многих странах, и у нас, и за рубежом используются фонари с солнечным питанием. Как правило, аккумулятор находится здесь же, рядом с опорой: в боксе у земли, под землей или, наоборот, наверху, возле солнечной панели. Понятно, что здесь температурная стойкость очень важна, так как перегрев сильно влияет на химические процессы в АКБ, ускоряя её износ.

Однако вместе с добавками повышается и цена продукции. Известно, что олово примерно в 10 раз дороже свинца, и если добавить необходимые по технологии 1,6% массы, то и цена батареи вырастет примерно на 16%.

Также под «солнечное» назначение очень подходят свинцово-кислотные батареи с трубчатыми пластинами, особенно батареи жидкостного типа серии OPzS. Они более устойчивы к глубоким разрядам за счет обслуживаемости, т.е. пополнения уровня электролита (в отличие от герметизированных аккумуляторов серия OPzS допускает долив воды). Повышенную цикличность обеспечивает трубчатая (панцирная) конструкция положительных пластин. Аналогичные пластины имеют аккумуляторы серии OPzV с гелевым электролитом, которые также имеют высокие показатели цикличности и активно используются в солнечных электростанциях. Обе серии рассчитаны на длительный срок эксплуатации.

Герметизированная аккумуляторная батарея серии OPzV
с трубчатыми пластинами от EverExceed

Довольно часто в «солнечных» целях используют сегодня тяговые батареи для погрузчиков, для электрокаров и штабелеров – PzS/PzB. Это тоже батареи с трубчатыми пластинами, и они рассчитаны на погрузчики, которые тоже работают в циклическом режиме. Потому иногда их используют в качестве автономных солнечных: они имеют хороший ресурс при тяжелой нагрузке – 1500 циклов глубокого разряда. Однако у таких АКБ есть недостаток – это обслуживаемые батареи упрощенной конструкции в сравнении с OPzS (отсутствуют фильтр-пробки), они выделяют газы и аэрозоли электролита, и здесь без технического помещения с вентиляцией, а также долива воды, точно не обойтись. Вдобавок ко всему, за счет особенностей состава активных материалов и повышенной плотности электролита срок службы таких аккумуляторов почти вдвое меньше, чем у OPzS. По этой причине, а также с точки зрения эксплуатационных удобств аккумуляторы PzS подойдут не всем.

Свинцово-кислотные аккумуляторы для типичного дома.

 

Расчет 1

Какие бы ни были батареи по типу, электролиту, исполнению пластин и пр., важный параметр для них – ёмкость. Практика показывает, что для стандартных домов вполне достаточна емкость от 200 до 1000 Ампер-часов (Ач). Так, если для дома площадью до 150 кв. метров с оглядкой на потребление и другие факторы применить четыре 12-вольтовых аккумулятора (для типичного входного напряжения инверторов 48 В) ёмкостью C10 = 200 Ач, то запасаемой в них энергии 9,6 кВт*ч хватит на 8-12 часов автономной работы при переменной в течение дня нагрузке со средней мощностью 0,5…1 кВт. Это с учетом небольшой поправки на преобразование (КПД инвертора) и неполной разрядки аккумулятора (отдачи около 80% емкости).

Естественно, можно поставить аккумуляторы и большей ёмкости, скажем, 300-400 Ач, наращивая ёмкость за счет параллельного включения равноценных групп. Для достижения большей емкости (600…1000 Ач) желательнее применять 2-вольтовые элементы OPzS / OPzV с трубчатыми пластинами (понадобится 24 элемента, соединенных последовательно).

Литиевые АКБ

Так уж получилось, что свинцово-кислотные из-за своей цены и инерционности рынка остаются пока самыми популярными на рынке солнечных электростанций. А между тем в спину им «дышат» литий-ионные батареи, превосходящие СК практически по всем параметрам.

Пока литиевые батареи, конечно, все ещё дороже свинцовых примерно в 2,5-3 раза, однако с ними пользователь очень многое выигрывает. Прежде всего по циклическому ресурсу, который до 10 крат выше; с литиевыми АКБ мы можем сохранить массу пространства в доме, они компактнее и легче. Эти батареи имеют больше возможностей по заряду и разряду. Если СК заряжаются до 12-14 час, то литиевые можно зарядить за час-два. Это очень удобно для автономных станций, потому что в случаях дефицита солнца летом или тем более зимой, для заряда батарей запускается дизельный генератор. И согласитесь, куда приятней и для души, и для кармана, когда работать ему придется всего пару часов. 

Еще один плюс литиевых батарей – возможность дистанционного мониторинга: мы видим все параметры, можем отслеживать все процессы в аккумуляторах. Здесь налицо состояние и всей АКБ в целом, и каждой ячейки в отдельности, отображаются характеристики по ёмкости, по току, по циклам заряда-разряда. А в случае необходимости коррекцию можно сделать через компьютер, без внешнего воздействия.

Для непрофессионального пользователя система управления АКБ – Вattery management system (BMS) – это вообще находка. Попробуй узнай, какое сейчас напряжение в свинцово-кислотной батарее и хватит ли заряда, к примеру, для стирки! А с литиевыми просто – все данные на экране. Срок службы литиевых батарей также больше. А такого понятия, как «высох», вообще нет. Для СК повышенное напряжение заряда ведет к ускоренному высыханию; если же продержали ее случайно разряженной неделю (например, уехали или недосмотрели хозяева) – считай, пропала батарея (засульфатировалась). Литиевую же внутренний компьютер сам отключит на определенном уровне, да и побыть частично разряженной для нее не так критично.

Если говорить о температурном режиме, то у литиевых батарей диапазон значительно шире. В плюсовых температурах мы можем их эксплуатировать до +60°С, а при отрицательных температурах потери емкости у них значительно меньше, чем у СК. Мы знаем, как иногда сложно на морозе заводится автомобиль, если аккумулятор потерял емкость. Так вот, литиевая батарея при -20°С в зависимости от типа элементов может отдать от 50 до 80% своей ёмкости. А СК в таких условиях – от 0 до 70%, в зависимости от тока разряда (чем выше ток разряда, тем меньше ёмкость), и это при условии, если в АКБ не замерзнет электролит.

Мнение эксперта

Преимущества «лития» бесспорны, но важно правильно оценить свои задачи

Сегодня наблюдается такая тенденция на рынке альтернативной энергетики: все интересуются литий-ионными батареями, но это пока не перешло в этап массовых покупок, есть определенный рубеж. Точно такое же было на рынке погрузочной техники (а мы уже несколько лет поставляем литий-ионные батареи в этот сектор): несколько лет покупатели спрашивали цену, им было дорого, со временем решались на покупку. Сначала международные компании, а потом уже и наши. И сегодня это уже очень серьезное направление на рынке погрузочной техники.

Преимущества литий-ионных аккумуляторов относительно свинцово-кислотных (СК) бесспорны, и по всем параметрам. Например, цена: кислотные первоначально дешевле, но по циклам заряда-разряда много дороже. Если сравнить первоначальную стоимость, то кислотные батареи будут дешевле в 2-4 раза, однако у герметичных кислотных 500 циклов, а у литий-ионных – 4000 циклов. Таким образом, по цене за цикл литий-ионная получается в 2 раза дешевле СК. Хотя срок окупаемости растягивается на годы, на 5, 10 лет, в зависимости от аккумулятора.

Большое преимущество «лития» в том, что можно прерывать заряд, потом заряжать снова, на него это не влияет, в сравнении с СК, для которого такие рваные циклы просто губительны. Или, например, недоразряд. Люди, бывает, берут свинцово-кислотные аккумуляторы с запасом и разряжают их наполовину, но если таким батареям не делать профилактически полные циклы раз в месяц-два, то они приобретают память и становятся через пару лет 50-процентной емкости. У литий-ионной АКБ эффекта памяти нет.

У литий-ионных, в отличие от СКС, имеется система мониторинга. Можно также вставить SIM-карту, и удаленно, через компьютер, наблюдать за состоянием аккумулятора; к тому же по любому сбою приходит сообщение.

При выборе батарей для солнечных электростанций все зависит от будущего режима работы – как часто планируется разряжать батареи. Если речь идёт о резервном питании (допустим, свет иногда пропадает), то свинцово-кислотных будет достаточно. Но если это автономное энергоснабжение, то нужен аккумулятор с большой цикличностью. Тогда, если есть первоначальный капитал, лучше купить литиевые батареи – и дольше послужат, и в 2 раза выиграешь по цене.

Хотя есть одна закавыка: в солнечной энергетике не полностью используются преимущества литий ионных батарей по зарядке: он заряжается большим током и быстро. А «солнце» дает небольшие токи зарядки, и там это длительный процесс. 

Александр ПРЯДКО, директор компании «Энерджи ГМБХ»

Литиевые аккумуляторы для «солнца».

 

Расчет 2

Очевидно, что литиевые батареи значительно привлекательней для домашней солнечной электростанции, и инвестиция в них куда более выгодна, чем в СК. Единоразово в литиевые мы вкладываем денег больше в 2,53 раза, однако по итогу значительно продлеваем срок службы наших АКБ и надолго избавляем себя от «головной боли», связанной с различными моментами их эксплуатации.

Попробуем сделать сравнительный анализ эффективности СК и литиевых батарей. Хорошая 12-вольтовая AGM-батарея ёмкостью 100 Ач за два года сможет обеспечить где-то 700 циклов разряда глубиной 80%. Средняя стоимость такой батареи примерно 250 долларов. Литиевая батарея с подобными исходными параметрами (ёмкость, напряжение), как уже говорили, будет стоить в 2,5-3 раза дороже, но легко прослужит 10 лет. При этом два года мы назначаем с некоторой форой для свинцовых, так как за этот срок их ожидает много рисков – «усушка», деградация пластин, недозарядка, глубокий разряд (сульфатация) и т.д. – так что два года работы возможны при самых благоприятных обстоятельствах. А литиевые мы в это время не жалеем, используем по полной, под 100% их возможностей. И вот, со всеми этими погрешностями в течение срока эксплуатации мы получаем чистую двукратную выгоду.

Завершая обзор, хочется вернуться к его началу и еще раз связать идею выбора аккумуляторных батарей для солнечных электростанций, с той отдачей, которую мы ждем от нашей СЭС. А рынок АКБ представляет массу возможностей для решения любых задач. Сегодня это свинцово-кислотные, литиевые батареи, а на горизонте уже новые технологии, графено-полимерные аккумуляторы, но это, как говорится, уже другая история…

Редакция благодарит заместителя директора компании «Пульсар Лимитед» Илью Питателева за консультации при подготовке статьи.

Подготовил Евгений ПОЛИЩУК,

«Украина Электро» - журнал электротехнического рынка Украины

6 (14), 2018

http://ua-electro.com/


Солнечная батарея на балконе, опыт использования / Хабр

Привет Geektimes. Данная статья является продолжением предыдущей части, про туристическое зарядное устройство "

Anker Solar 21Вт

". Идея использования солнечной батареи для зарядки разных гаджетов мне показалась весьма перспективной, но конечно, 21Вт в качестве универсальной зарядки мало — хочется иметь возможность заряда не только в солнечную погоду, а для этого нужен запас по мощности. Поэтому были куплены полноценные солнечные панели и начаты эксперименты с ними.

Что из этого получилось, подробности под катом.



Железо


1. Солнечная панель

Тут есть разные варианты, но на балконе основным ограничением является наличие свободного места. Для понимания порядка цен, батарея на 50Вт стоит примерно 5000руб и выглядит так:

Размеры панели в мм — 540x620x30, вес 4кг.

Балконы по размеру бывают разные, исходя из габаритов панелей, вполне без проблем можно поместить 2 или 4 штуки, больше уже не влезет. Для теста было куплено 2 панели по 50Вт. Такая батарея дает около 18В под нагрузкой или 24В без нее, значит при использовании 2х батарей нужно рассчитывать на суммарное напряжение до 50В (к примеру многие dc-dc преобразователи штатно работают до 30В). Можно соединить батареи и параллельно, но тогда потери из-за длины проводов будут чуть выше.

2. Контроллер

Здесь есть 2 варианта:

— Солнечные панели + контроллер + аккумулятор

Это классическая конструкция: контроллер заряжает аккумулятор когда есть солнце, пользователь когда ему надо, эту энергию использует.

Преимуществ у данной системы несколько:

— энергией можно пользоваться когда угодно, а не только когда светло,
— возможность подключения инвертора и получения на выходе 220В,
— как бонус, резервный источник в доме на случай отключения электричества.

Недостаток один: использование аккумулятора большой емкости в корне убивает экологичность идеи данного мероприятия. Число циклов заряда/разряда аккумуляторов ограничено, они не любят переразряд, к тому же и аккумуляторы и контроллеры довольно-таки дорогие. Цена контроллера составляет от 1000р за самую дешевую ШИМ-версию, до 10000-20000р за более дорогую (и эффективную) версию с поддержкой MPPT (что такое MPPT можно почитать здесь). Цена аккумулятора составляет от 5000р за обычный гелевый аккумулятор на 40-50А*ч, некоторые используют батареи LiFePo4, они разумеется дороже.

— Grid-tie инвертер

Эта технология наиболее перспективна на данный момент.

Суть в том, что конвертор преобразует и отдает энергию сразу в домашнюю электросеть. При этом потребляемая от общей сети энергия уменьшается, домовой электросчетчик фиксирует меньшие показания.

В идеале, если солнечные панели дают достаточно энергии для всех потребителей, значение на электросчетчике вообще не будет расти. А если потребление квартиры/дома меньше, чем выработка солнечных панелей, то счетчик будет фиксировать «экспорт» энергии, что должно учитываться компанией-поставщиком электричества. В России правда такая схема пока не работает — более того, большинство старых электросчетчиков считают энергию «по модулю», т.е. за отдаваемую энергию еще и придется платить. Вроде в 2017 году вопросы микрогенерации на законном уровне обещали начать решать. Но впрочем для панелей на балконе все это имеет лишь теоретический интерес — их выработка слишком мала.

Цена grid-tie инвертора составляет от 100$, в зависимости от мощности. Отдельно стоит отметить микроинветоры — они ставятся прямо на батарею, и отдают сразу сетевое напряжение, однако рекомендуемая мощность панелей составляет не менее 200Вт. Инвертор крепится прямо на задней стенке солнечной панели, это позволяет соединять их так:

Но для балкона это разумеется, неактуально.

Тестирование

Первым делом было интересно выяснить, какую реальную мощность можно получить с солнечных панелей. Для этого за 15$ была куплена плата АЦП ADS1115 для Raspberry Pi:

Использовать ее просто, входное напряжение делится делителем и подается на аналоговый вход, на выходе имеем цифровые значения. Исходники для работы с АЦП можно

взять здесь

. Также был куплен датчик тока ACS712, датчик напряжения был сделан из кучки резисторов (дома нашлись только одного номинала). В качестве нагрузки была установлена обычная лампочка на 100Вт. Разумеется, от 48 вольт она не горела (лампочка расчитана на 220В), а лишь еле-еле светилась. Сопротивление спирали составляет 42 Ома, что по напряжению позволяет примерно оценить мощность (хотя у лампы накаливания сопротивление нелинейно, но для грубой прикидки сойдет).

Первая тестовая версия выглядела так:

Технофетишистам не смотреть!

Исходник был допилен, чтобы данные и текущее время сохранялись в CSV, также на Raspberry Pi был запущен web-сервер, чтобы скачивать файлы по локальной сети.

Результаты за обычный вполне ясный день с переменной облачностью выглядят так:

Видно что пик напряжения приходится на раннее утро, что есть следствие неправильной установки панелей — в идеале они не должны стоять вертикально.

А вот так выглядит «провал» в день, когда набежали тучи, и пошел дождь:

Учитывая напряжение в 44В и сопротивление нити накала лампы в 42Ома, можно грубо прикинуть (нелинейность сопротивления лампы игнорируем), что в лучшем случае получаемая мощность P = U*U/R = 46Вт. Увы, КПД 100-ваттной панели при вертикальной установке не очень хорош — солнечные лучи падают на панель не под прямым углом. В худшем случае (пасмурно, дождь) мощность падает даже до 10Вт. Зимой и летом суммарная получаемая энергия также будет отличаться.

Опыт с отдачей энергии напрямую в сеть оказался неудачным: 500-ваттный инвертер от 45 ватт просто не заработал. В принципе это было ожидаемо, так что инвертор оставлен на будущее до переезда на место с балконом побольше.

В итоге, учитывая решение отказаться от буферных аккумуляторов, единственным рабочим вариантом оказалось использование dc-dc конверторов напрямую: к примеру вот такой конвертер может заряжать любые USB-девайсы, на его выходе уже есть и USB-разъем:

Есть модели чуть подороже, они имеют больший максимальный ток и большее число USB-разъемов:

Есть мысль также найти dc-dc-конвертер для зарядки ноутбука, их выбор на eBay весьма велик.

Заключение

Данная система имеет экспериментальный характер, но в целом можно сказать что оно работает. Как видно по графику, примерно с 7 утра и до 17 вечера отдаваемая панелями мощность более 30Вт, что в принципе не так уж плохо. В совсем пасмурную погоду результаты разумеется хуже.

Об экономической целесообразности речи разумеется не идет — при выработке 40Вт*ч по 7 часов, за неделю будет выработано 2КВт*ч. Окупаемость в ценах своего региона каждый может прикинуть самостоятельно. Вопрос разумеется не в цене, а в получении опыта, что всегда интересно.

Но куда девать энергию, вопрос пока открытый. Использовать 40Вт для зарядки USB-устройств это чересчур избыточно. На eBay есть grid tie инверторы на 300Вт с рабочим напряжением 10.5-28В, однако отзывов по ним мало, а тратить 100$ на тест не хочется. Если подходящее решение так и не найдется, можно считать что одна 50-ваттная панель является оптимумом для балкона — ею можно заряжать разные гаджеты, избыточность в этом случае минимальна.

По крайней мере, уже сейчас все домашние цифровые устройства (телефоны, планшет) переведены на «зеленую энергию» без особых хлопот. Есть мысль все-таки рассмотреть использование буферного LiFePo4 аккумулятора — но вопрос выбора и аккумулятора и контроллера пока открыт.

В дополнение: как подсказали в комментариях, можно использовать свинцовый аккумулятор, например автомобильный. Да, это действительно дешевый и работающий вариант, со 100-ваттной панелью будет достаточно примерно такого контроллера, ценой всего 10-20$ на eBay:

Фото

Гуглить по словам PWM Solar Charger.


Но это решение не совсем экологичное и не совсем интересное, поэтому в плане изучения технологий я его не рассматриваю. А если кому-то надо например, запитать видеокамеру на даче, то наверное вполне вариант.

Продолжение в следующей части. Краткую видео-версию также можно посмотреть в ролике на youtube.

PS: В комментарии просили выложить фото, в данный момент батареи выглядят так:

Фото

Такой размер панелей не мешает пользоваться балконом и в принципе не портит внешний вид. Также, как подсказали в комментариях, выгоднее покупать панели бОльшей мощности, оптимумом по цене являются панели на 150-200Вт, но их размещение чуть сложнее, и надо уже прикидывать габариты, поместится панель или нет. Также встает вопрос надежного крепежа.

Климат и экология: Среда обитания: Lenta.ru

Австралийский стартап SunDrive выпустил самую эффективную солнечную батарею в истории

Австралийский стартап SunDrive совершил прорыв в солнечной энергетике, создав самую эффективную и дешевую солнечную панель в истории. Молодой ученый Винс Аллен изобрел технологию, работая у себя в гараже в одиночку, и она превзошла разработки многомиллиардных китайских компаний, пишет Bloomberg.

Винс Аллен решил заменить серебро, которое обычно используется для вывода электричества из солнечных батарей, на более дешевый материал — медь. 32-летний кандидат наук из Университета Нового Южного Уэльса построил оборудование для исследований и разработок у себя в гараже и пробовал применить медь при создании солнечных панелей различными способами, пока не нашел рабочий метод.

Чтобы внедрять новую технологию на рынок, Аллен в 2015 году основал компанию SunDrive Solar. На этой неделе фирма получила официальное сообщение о том, что ее разработка побила рекорд по эффективности преобразования света в электричество. Такой результат показал анализ, проведенный независимым немецким Институтом исследований солнечной энергии Хамелин (ISFH). Показатель эффективности батареи SunDrive Solar составил 25,54 процента. Предыдущий рекорд — 25,26 процента — был установлен китайским гигантом Longi Green Energy Technology. В прошлом году азиатская компания была продана за 8,4 миллиарда долларов.

Материалы по теме:

Если австралийский стартап сможет вывести свою разработку на мировой рынок, стоимость солнечных батарей значительно снизится, и отрасль станет гораздо меньше зависеть от серебра. «Медь очень распространена и обычно стоит примерно в 100 раз меньше серебра», — объяснил Аллен. На сегодняшний день SunDrive привлекла около 7,5 миллиона долларов от компании Blackbird Ventures и других крупных инвесторов. Кроме того, молодое предприятие получило грант на сумму более двух миллионов долларов от государственного Агентства по возобновляемым источникам энергии (ARENA), продвигающего экологичные технологии.

Около 95 процентов солнечных панелей изготавливаются из фотоэлементов — маленьких ячеек из кремниевых пластин, преобразующих энергию солнца в постоянный электрический ток. Чтобы вывести ток, нужно соединить ячейки металлическими контактами. Для этой цели производители долгое время использовали серебро, так как этот металл имеет высокую прочность и пластичность. Однако серебро может составлять до 15 процентов от стоимости солнечной батареи. Бывший глава Suntech Power Holdings Ши Чжэнжун, получивший прозвище Король солнца за его огромную роль в индустрии, стал инвестором SunDrive и заявил, что исследователи уже давно пытаются применить медь в создании солнечных панелей. «Переход на медь — это то, чего мы давно желали, но добиться этого было очень трудно», — сказал он. Ши также выразил надежду, что производители перейдут к использованию серебра и меди в пропорции 50 на 50.

Сектор солнечной энергетики разрастается, так как экологическая повестка приобретает все большую актуальность. За 2020 год мировые объемы производства солнечных панелей рекордно выросли — общая мощность установок увеличилась на 23 процента и достигла 760 гигаватт.

КПД солнечных батарей подбирается к верхней границе – Наука – Коммерсантъ

Совокупная установленная мощность солнечных модулей на Земле за последние десять лет возросла более чем в 15 раз, достигнув 700 ГВт. Но этот сегмент энергетики совсем небольшой — в 2020 году солнечные панели на Земле произвели всего около 3% мирового электричества. А десять лет назад было на порядок меньше — около 0,2%.

В 1883 году американский инженер Фриттс создал прототип солнечной батареи из позолоченного селена с КПД 1%.

Итальянский ученый армянского происхождения Джакомо Чамичан в 1912 году представил проект своей солнечной батареи.

В 1930-х годах в СССР сернисто-таллиевые фотоэлементы были созданы под руководством академика Абрама Иоффе.

Близкие к современным солнечные батареи на основе кремниевых полупроводников впервые изготовили в компании BellLaboratories. КПД их батарей составлял всего 4%. Тем не менее и с такими батареями в 1958 году в космос отправился американский спутник Vanguard 1. В том же году полетел в космос советский «Спутник-3» с кремниевыми солнечными батареями на борту.

Коэффициент полезного действия (КПД) серийных промышленных солнечных батарей (оснащенных электроникой кремниевых модулей) за последние 10–15 лет вырос от 16% до 20%, а в лабораторных экземплярах (не инкапсулированных элементах) — до 24–26%. Теоретический предел кремниевых монокристаллических батарей — 29,4%. Этот тип солнечных элементов по-прежнему остается самым популярным, как и десятки лет назад. Он занимает около 95% современного рынка фотовольтаических элементов для преобразования солнечной энергии.

Самые «солнечные» страны

Оценивать развитие солнечной энергетики в среднем на планете очень непросто. В одних странах ее нет совсем, в других она присутствует чисто символически, зато в некоторых уже составляет заметную долю от общей выработки энергии. Лидером в этой области, несомненно, является Китай, где с 2010 по 2020 год суммарная номинальная электрическая мощность всех модулей источников преобразования солнечной энергии составила 253 ГВт. Это в полтора раза больше, чем во всех странах ЕС, вместе взятых. Почти вчетверо меньше составляет установленная мощность солнечных элементов, появившихся за тот же период в США (73,8 ГВт) и Японии (67 ГВт). Недалеко от них Германия (53,8 ГВт), Индия (39 ГВт), Италия (21,6 ГВт), Австралия (17 ГВт), Вьетнам (16,5 ГВт), Франция (11,7 ГВт). Остальные страны, включая солнечные Бразилию и Таиланд, произвели за десять лет оборудования с номинальной мощностью солнечных электростанций менее 10 ГВт, а некоторые, например Аргентина,— менее 1 ГВт. Докладывая о развитии сектора солнечной энергетики, эксперты редко прибегают к абсолютным значениям, поскольку в большинстве государств эти цифры выглядят очень невыгодно. Чаще всего называют рекордные темпы роста, которые действительно такими являются во многих государствах. Так, например, с 2015 года Россия увеличила выработку энергии на солнечных элементах в 14 раз — с 0,1 ГВт до 1,4 ГВт. Причем только за 2020 год это значение выросло на 39% (с 1,1 ГВт до 1,4 ГВт). Цифры пока крошечные, зато темпы отличные.

Солнечные элементы монокристаллического типа (тонкие пластины из куска кремния) — надежные, «кондовые», долговечные, со своими очевидными плюсами и минусами. Недолгое время они проигрывали в цене тонкопленочным солнечным элементам, где слои из аморфного (без кристаллической структуры атомов) кремния, нанесенного на обычное стекло или другую подложку. Но КПД таких элементов составлял всего 10%, а цены на монокристаллический кремний снижались, и вскоре тонкопленочные солнечные элементы заняли свою небольшую нишу — дешевый сегмент легких мобильных батарей, например, для подзарядки телефонов на природе. Основной упор по усовершенствованию технологии в качестве перспективной зеленой альтернативы углеводородным топливам сегодня делается на монокристаллическую технологию, где центральный элемент представляет собой тонко нарезанные пластины-слайсы из цельного кремниевого «бруска».

Весь покрытый пленками

Лаборатории экспериментируют с разными соединениями, каждое со своими преимуществами и недостатками. Получая превосходный результат по одним параметрам, исследователи неизбежно проигрывают по другим, и этот бесконечный процесс борьбы за техническое превосходство при сохранении экономической целесообразности похож на мировую гонку — кто быстрее и дешевле придумает оптимальное решение. Сейчас основная ставка в этой гонке — на гетероструктуры. Они относятся к подложечным устройствам, поскольку в них в качестве подложки используется пластина монокристаллического кремния. Она покрыта с обеих сторон множественными пленками из разных материалов, у каждого из которых своя функция. Обычно с обеих сторон монокристалла тонкие пленки из аморфного кремния. Кристаллический и аморфный кремний — это два материала с различной структурой, отсюда и термин «гетеро».

«Счет в индустрии в терминах эффективности идет на единицы и даже на десятые доли процента. В качестве примера — увеличение средней эффективности солнечной панели стандартного размера с 15% до 20% привел к росту ее номинальной мощности с 250 Вт до 370 Вт, то есть в полтора раза»,— объяснил кандидат физико-математических наук, старший научный сотрудник Института теплофизики им. С. С. Кутателадзе Сибирского отделения РАН Александр Замчий взаимосвязь «небольших» побед по увеличению КПД солнечного элемента с революционными практическими результатами.

Александр работал над повышением эффективности солнечных элементов в Институте энергетических исследований исследовательского центра Юлиха в Германии в рамках стажировки по стипендии DAAD в составе большой международной группы. Работа, опубликованная в NatureEnergy, выполнена с коллегами из Нидерландов, России, Китая и Эквадора. Исследователям удалось выяснить, что слои из карбида и диоксида кремния, используемые в качестве лицевой пленки-контакта для солнечных элементов из монокристаллического кремния, могут сочетать исправление абсолютно большей части структурных дефектов, которые снижают проводимость поверхности кремниевой пластины и обеспечивают высокую оптическую прозрачность.

Прозрачнее невидимого

Пластина кремния толщиной 200 микрон (производители стараются сделать потоньше, чтобы снизить себестоимость) — это моноструктура, в которой происходит поглощение фотонов (частиц света) и рождение носителей заряда. Пока промышленность (в основном китайская) улучшает качественные характеристики серийной продукции, ведущие лаборатории мира заняты экспериментами с совершенно новыми подходами к архитектуре солнечных элементов. Три главных параметра, за которые ведется упорная борьба,— прозрачность, проводимость и пассивация лицевых тонкопленочных покрытий. Ученые подбирают сочетания материалов, покрывая ими пластину монокристалла кремния с разных сторон.

Например, за счет пленок полупроводника с обеих сторон кристалла ученые научились корректировать дефекты на поверхности кристалла кремния, где в кристаллической решетке часто не хватает атома кремния, что затрудняет протекание тока. Пленочные покрытия из различных полупроводниковых соединений прекрасно решают эту проблему — физики называют пассивацией эффект «коррекции» проводимости монокристалла с помощью пленок. Для пассивации на лицевой (верхней) стороне панели солнечного элемента исследователи использовали вместо традиционного аморфного кремния пленку из диоксида и двухслойного карбида кремния, где один слой — с высоким содержанием водорода (гидрогенизированный). Тонкий слой (1,5 нм) из диоксида кремния (стекло) отлично пассивирует контакты. Невидимая глазу пленка диоксида — это вынужденная мера, поскольку толстое стекло не проводит электричество.

Водород в слое карбида кремния выполняет функцию пассивации или связывания, то есть «ремонтирует» оборванные связи для протекания тока. Конечно, не так хорошо, как с этим справляется аморфный кремний, но в отличие от него карбидная пленка имеет еще и высокую прозрачность и проводимость. Однако водородсодержащий слой карбидной пленки не обладает требуемой электропроводимостью и прозрачностью. Для решения этой проблемы ученые сделали двухслойную структуру карбидно-кремниевой пленки. Одна, совсем тоненькая (3 нм), отвечает за хорошую пассивацию, другая (25 нм) — за сверхвысокую прозрачность и отличную электропроводимость. Для этого при выращивании слоя пленки температуру металлической нити (активатора газовой смеси, из которой осаждается пленка) поднимают с 1775 до 2000 градусов, и в итоге получается единая двухслойная структура со всеми необходимыми свойствами.

Для человеческого глаза все покрытия пластины кремния кажутся прозрачными. Но в оптике прозрачное прозрачному рознь. Чем больше фотонов от солнечного света попадет на пластину, тем больше электронов побегут по ее электродам и тем выше КПД солнечного элемента. Итак, прозрачность обеспечила максимальный захват энергии, а пассивация помогла току не оборваться и по электродам выйти из солнечного элемента без потерь.

Доля рынка устройств на основе пассивирующего контакта сегодня составляет единицы процентов, но, по прогнозу экспертов, к концу десятилетия возрастет до 20% и более. В нашей стране производством солнечных батарей занимается компания «Хевел», которая в 2009 году в Новочебоксарске запустила завод по выпуску фотоэлектрических модулей на основе гетероструктурной технологии. В 2020 году мощность завода увеличилась с 260МВт  до 340 МВт солнечных панелей в год, что примерно равно текущей совокупной мощности всех солнечных батарей Оренбургской области. Солнечные панели этого производителя покрывают обширные территории Республики Алтай, Бурятии, Башкирии, Калмыкии, Саратовской и Астраханской областей, а также Адыгеи и Казахстана. В конце 2021 года солнечная электростанция мощностью 30 МВт была открыта в Омской области, а в 2022 году планируется построить еще две солнечные электростанции, Читинскую и Черновскую, по 35 МВт в Забайкалье.

Борьба за каждый электрон

Новые прозрачные пассивирующие пленки-контакты из карбида и диоксида кремния, покрывающие солнечные элементы с фронтальной стороны, повысили КПД солнечной батареи до 24%. На графиках в статье видно, что в определенных диапазонах энергии, поступающей на солнечный элемент, уровень прозрачности пленки из карбида кремния в десять раз превышает параметры пленок из аморфного кремния, то есть при одинаковой толщине пленки она пропустит в десять раз больше солнечного света, который преобразуется в электрическую энергию. Это не повысит КПД в десять раз, разумеется, поскольку КПД складывается не только из прозрачности, но еще из пассивации и проводимости. Меняя один параметр, к сожалению, нельзя зафиксировать все остальные. У пленок из аморфного кремния пассивация выше, а с прозрачностью не очень хорошо, поэтому этот слой размещен снизу пластины.

За последние полгода со времени выхода статьи в NatureEnergy ученые провели целый ряд расчетов с различными покрытиями, пытаясь не потерять прозрачность и увеличить пассивацию пленки из карбида кремния. Проанализировав все результаты своих экспериментов, они создали целую «дорожную карту», согласно которой у них есть все шансы гарантированно повысить КПД солнечных элементов еще на 1% в ближайшие полтора года, то есть довести его до 25%.

Поверх уже имеющихся пленок ученые нанесли антиотражающие антибликовые покрытия из фторида магния, стараясь, чтобы еще меньше фотонов отразилось от поверхности солнечного элемента.

Помимо увеличения многослойности авторы работы приняли решение сократить занимаемую площадь мельчайших металлических электродов, густая сеть из которых покрывает солнечный элемент, разделяя его на узенькие сегменты. Снизу солнечного элемента электрод выглядит как сплошная серебряная пленка из термопасты, которую наносят методом трафаретной печати, раскаляя ее до 200 градусов. Тем же методом поверх всей тонкопленочной структуры наносят узенькие серебряные дорожки. Авторы статьи посчитали, что дорожки существенно затеняют панель, занимая слишком много «места под солнцем». Оптимизировав процесс металлизации, они вдвое сократят ширину проводящих серебряных контактов (от 60 до 30 микрон) и тем самым еще немного повысят КПД.

Мария Роговая

Солнце на дне океана

Проект стоимостью свыше $22 млрд предусматривает прокладку кабеля длиной 4,2 тыс. км по дну Индийского океана. Через этот кабель энергия, выработанная на солнечных станциях в Австралии, будет передаваться в Сингапур. Преодолено очередное бюрократическое препятствие на пути этого кабеля: Индонезия выдала разрешение на работу в ее территориальных водах.

Северные территории Австралии — это бескрайние просторы и жаркое солнце; в Сингапуре места мало, но ему хотелось бы перевести энергоснабжение на возобновляемые источники. Эти две страны вскоре смогут объединиться в одном из крупнейших и самых амбициозных проектов в области возобновляемых источников энергии из когда-либо предпринимавшихся.

Проект называется PowerLink, ведет его австралийская компания Sun Cable, она собирается создать гигантский энергетический парк в районе Пауэлл-Крик. Солнечные батареи займут 12 тыс. га засушливых земель примерно в 800 км к югу от города Дарвина — это одно из самых солнечных мест на Земле.

Эта солнечная станция будет на пике вырабатывать 17–20 ГВт энергии, которую можно будет накопить в аккумуляторах емкостью 36–42 ГВт.

Станция Пауэлл-Крик будет почти в десять раз больше, чем нынешний рекордсмен — солнечный парк Бхадия в Индии с мощностью всего 2,245 ГВт. А емкость будущих аккумуляторов превышает предыдущий рекордный проект более чем в 30 раз!

Австралия явно мотивирована огромным успехом гигантской батареи Tesla емкостью 150 МВт, построенной в Южной Австралии в 2017 году. Соседний штат Виктория объявил, что в конце 2021 года начнет работать установка емкостью 300 МВт. Следом штат Новый Южный Уэльс анонсировал строительство самой большой батареи — 1,2 ГВт. Но все эти аккумуляторы выглядят гномиками в сравнении с PowerLink.

Высоковольтный кабель с солнечной энергией будет удовлетворять 15% всей потребности Сингапура в электричестве. Кроме того, солнечная станция будет снабжать светом и город Дарвин, через который пройдет электропередача.

Ожидается, что в эксплуатацию кабель будет введен в 2028 году. Пока же Дэвид Гриффин, гендиректор Sun Cable, поблагодарил индонезийское руководство: «Одобрение проекта приближает нас к началу новой эпохи, когда начнутся генерация и передача доступной, управляемой возобновляемой энергии в гигантских количествах».

Это не первая, но, видимо, наиболее продвинутая идея транснациональных поставок энергии из возобновляемых источников. В частности, известны проекты генерации солнечной энергии в Северной Африке с передачей ее в Южную Европу, а также в Монголии с передачей в Японию и Южную Корею.

Solar kit Солнечная батарея 100Вт 12В (Солнечная панель, Регулятор напряжения) ВОЛЬТ

ПЕРЕД ПОКУПКОЙ ПРОСМОТРИТЕ НАШЕ РУКОВОДСТВО И УБЕДИТЕСЬ, ЧТО ВЫ ВЫБИЛИ ПРАВИЛЬНУЮ КОНФИГУРАЦИЮ - НАЖМИТЕ ЗДЕСЬ

ГОТОВЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ КОМПЛЕКТ С СУМЕРОЧНЫМ ДАТЧИКОМ 100ВТ (ПАНЕЛЬ, РЕГУЛЯТОР НАПРЯЖЕНИЯ, ПРОВОДА) VOLT ПОЛЬША

Готовый фотоэлектрический комплект с функцией сумеречного датчика.

  • Этот набор предназначен для мощных аккумуляторов и маломощных приемников, напр.садовые светильники, светодиодное освещение.
  • Он идеально подходит для садового участка, кемпинга, поездки или всякий раз, когда мы хотим зарядить аккумулятор с помощью солнечной энергии, например, в автомобиле.

Содержимое набора

1. ПОЛИМОРФНАЯ ФОТОЭЛЕКТРИЧЕСКАЯ ПАНЕЛЬ VOLT P-100 100 Вт VOLT ПОЛЬША

  • Размеры: 1016 x 670 x 30 мм

КОМПЛЕКТ ПРОВОДОВ ВКЛЮЧЕН:
- провода длиной около 90 см, идущие от панели, с разъемами MC4
- дополнительные провода длиной 4 метра, с разъемами MC4 и зажимами типа "крокодил" с другой стороны

2.РЕГУЛЯТОР НАПРЯЖЕНИЯ 10A 12 / 24V С ФУНКЦИЕЙ СУМЕРЕК И 2x USB VOLT POLSKA

  • Контроллер имеет функцию программируемого сумеречного датчика.
  • Подключенный приемник можно включить после захода солнца на определенное количество часов.
  • Кроме того, в будущем регулятор может быть дополнен дополнительными панелями, благодаря которым мы сможем получать больше электроэнергии.
  • Контроллер заряжает батареи по методу PWM .Он модулирует диапазон напряжения от 0 до 100%, что позволяет быстро и стабильно заряжать аккумулятор вне зависимости от погоды и состояния солнечной системы.
  • ДВОЙНОЙ USB

Настройки контроллера:

  • Включение/выключение приемников.
  • Сумеречный выключатель (включение приемников на заданное время после захода солнца).
  • Программируется до 15 часов.

Защита контроллера:

  • Короткое замыкание солнечной батареи.
  • Перегрузка со стороны нагрузки.
  • Неправильная полярность батареи.
  • Защита от перегрева.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ РЕГУЛЯТОРА:

  • Защита от разрядки: 11,1 В / 22,2 В
  • Точка восстановления нагрузки: 12,5 В/25 В
  • Максимальное входное напряжение (от панелей): 48 В
  • Класс водонепроницаемости: IP30
  • Макс.зарядный ток (ток панели): 10A
  • Макс. ток нагрузки: 10А
  • Рабочее напряжение: 12 В 24 В пост. тока
  • Собственное потребление: <6 мА
  • Рабочая температура: от -20 ℃ до +60 ℃
  • Размеры: 97 x 66 x 25 мм (Д/Ш/В)
  • 2 порта USB
  • Компенсация зарядки в зависимости от температуры: -30,0 мВ / 1 градус C / 2 В

ДЛЯ КАЖДОГО КОМПЛЕКТА МЫ ПРЕДОСТАВЛЯЕМ ПОДРОБНУЮ ИНСТРУКЦИЮ ПО ПОДКЛЮЧЕНИЮ ПАНЕЛИ К АККУМУЛЯТОРУ.
Мы также предлагаем возможность сборки фотогальванической установки по желанию заказчика.


Солнечная батарея мощностью 100 Вт легко зарядит аккумулятор емкостью 33 Ач менее чем за 6 часов от полного разряда !!!

БЕЗОПАСНАЯ ПОКУПКА

Гарантия на товар 24 месяца
Возможность возврата товара без объяснения причин в течение 14 дней

.

Солнечные батареи

КОНСТРУКЦИЯ ФОТОЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ. ПОЛНОСТЬЮ ИСПОЛЬЗУЙТЕ СОЛНЕЧНЫЕ БАТАРЕИ.

Существует две основные конфигурации фотоэлектрических систем: автономные (автономные) и подключенные к сети

Автономные системы


Автономные системы состоят из солнечной батареи, аккумулятора и устройства, контролирующего уровень заряда аккумулятора и отключающего панель при полном заряде аккумулятора или отключающего питание для защиты аккумулятора от чрезмерного разряда.Поэтому аккумуляторы должны иметь достаточно большую емкость, чтобы обеспечить подачу энергии ночью и в периоды плохой погоды.

Системы, подключенные к сети


Системы, подключенные к сети, обычно имеют форму электростанции с большим количеством солнечных батарей, подающих энергию непосредственно в электрическую сеть. Альтернативное использование таких систем - питание зданий, подключенных к сети. В такой системе энергия извлекается из сети только тогда, когда потребность в ней превышает стоимость энергии, производимой солнечными панелями.Система подключается к сети через инвертор, также известный как инвертор. Батареи не нужны для этого типа системы, так как сеть способна принимать всю энергию, производимую фотогальванической системой. В результате системы такого типа примерно на 20-30% дешевле, чем автономные системы.

КОМПОНЕНТЫ ФОТОЭЛЕКТРИЧЕСКИХ СИСТЕМ


Солнечные батареи / Солнечные панели / Фотогальванические модули - устройства, используемые в фотогальванических установках, изготовленных из правильно соединенных фотогальванических элементов, которые используют фотоэлектрическое явление для производства электроэнергии.Основным материалом, используемым в производстве фотоэлементов, является кремний. В лабораториях достигается эффективность преобразования солнечного излучения кремниевых элементов в электрический ток до 24%. Можно получить еще больший КПД, но такие элементы используются только в космической отрасли из-за высокой цены. Средний срок службы солнечных батарей зависит от их типа и составляет несколько десятков лет. Большинство производителей гарантируют, что эффективность солнечной панели упадет примерно до 80% от ее первоначальной мощности через 25 лет.

Типы кремния, используемые в солнечных батареях:

  • монокристаллический - самый высокий КПД: 14-20%, особенно в солнечный день, самая высокая стойкость, самая высокая цена,

  • поликристаллический - высокая эффективность преобразования: 13-17%, в облачных условиях может быть даже выше, чем у монокристаллических модулей, долговечность сравнима с монокристаллическим кремнием, цена немного ниже монокристаллических кремниевых элементов,

  • аморфный - КПД несколько ниже, чем у монокристаллических аккумуляторов.Все чаще используется из-за низкой цены. Также используется в гибких солнечных панелях, используемых в туризме

  • поликристаллический - сочетание монокристаллической и поликристаллической форм. На этапе производства кристаллов кремния технология меняется с монокристаллической на поликристаллическую. Солнечные элементы этого типа достигают эффективности немного ниже, чем у монокристаллических, и выше, чем у поликристаллических

    .

Контроллер заряда - это устройство, используемое между солнечной панелью и аккумулятором.Регуляторы используются для поддержания полного заряда батареи и предотвращения ее перезарядки и чрезмерной разрядки потребителями. Они также защищают от так называемого с «темновым» током, потребляемым солнечной панелью при отсутствии освещения, если панель не оборудована блокировочным диодом. Регуляторы могут различаться напряжением, с которым они работают, и максимальным током, который может через них протекать. Типичный регулятор работает с напряжением 12 или 24В. Усовершенствованные регуляторы типа MPPT используют систему отслеживания точки максимальной мощности, полученную от панели, которая автоматически позволяет системе работать при напряжении, обеспечивающем максимальную выходную мощность.

Типы контроллеров:

  • простой, 1-2 шага - работает за счет накачки энергии в аккумулятор. После достижения соответствующего напряжения панель отключается.

  • 3-ступенчатый ШИМ

  • MPPT (отслеживание точки максимальной мощности) - регуляторы, отслеживающие максимальное напряжение. Этот тип регуляторов также работает в режиме PWM. Регуляторы типа MPPT позволяют подавать на аккумулятор на 10-30% больше энергии.Обычно они дороже стандартных ШИМ-регуляторов.

PWM - Солнечные контроллеры PWM используют технологию, аналогичную современным зарядным устройствам. Когда напряжение батареи достигает установленного предела, алгоритм ШИМ медленно снижает зарядный ток, чтобы предотвратить перегрев батареи, в то же время пытаясь доставить максимальное количество энергии в батарею в кратчайшие сроки. ШИМ работает по принципу импульсной зарядки. Вместо того, чтобы постоянно снабжать аккумулятор энергией, он посылает короткие импульсы высокого напряжения.Контроллер проверяет уровень заряда батареи и определяет, как долго следует отправлять серию напряжений. В случае заряженного аккумулятора контроллер посылает короткий сигнал каждые несколько секунд, а в случае разряженного аккумулятора сигнал длинный и почти непрерывный.

Кроме того, технология ШИМ имеет дополнительные интересные преимущества. Вот они:

  • аккумулятор можно восстановить до первоначальной емкости

  • увеличивает допустимую мощность батареи

  • Аккумулятор

    можно заряжать до 90-95% своей емкости при 60% для классических решений.

  • снижает нагрев батареи

  • автоматическая адаптация к старению солнечной батареи

  • контроль перепадов напряжения и температурных эффектов в системах солнечных панелей

Преимущества, которые мы получаем от этого:

  • более длительный срок службы батареи

  • минус стоимость солнечной системы

  • дополнительная емкость аккумулятора

  • уменьшить частоту отключения устройств

  • возможность использования меньшей батареи для снижения затрат

  • 20%-30% больше энергии от солнечных панелей

  • Солнечная система

    может быть уменьшена в размерах

Преобразователь (инвертор) - устройство, используемое в автономных системах, преобразующее постоянный ток 12 В в переменный ток 230 В.Благодаря этому мы можем подключить к системе повседневные устройства, такие как телевизор. Преобразователи подключаются напрямую к аккумулятору. Обычно имеют функцию защиты от переразряда аккумулятора

Инвертор - устройства, используемые в системах, подключенных к сети. Основными функциями инвертора являются: преобразование постоянного напряжения в переменное, формирование выходной волны переменного напряжения и, таким образом, регулировка сигнала напряжения в соответствии с принятым энергокомпанией.Наиболее важными характеристиками инвертора в фотоэлектрических приложениях являются его характеристики надежности и эффективности. Они предназначены для непрерывной работы вблизи точки максимальной мощности. Эффективность инвертора обычно определяется его расчетной рабочей мощностью, но обычно инверторы в фотоэлектрических системах большую часть времени работают с частичной нагрузкой. Высокая эффективность частичной нагрузки особенно важна для подключенных к сети инверторов, работающих в климате Центральной Европы, где среднегодовая выходная мощность фотоэлектрической батареи может составлять всего 10% от пиковой мощности.Инверторы обычно имеют эффективность при полной нагрузке от 90% до 96%, а при нагрузке 10% от 85% до 95%. Поскольку согласующие потери здесь обычно больше, чем потери сопротивления, инверторы испытывают постоянное снижение эффективности по мере уменьшения выходной и входной мощности.

Схема подключения солнечной батареи с регулятором заряда:

.

Подбор солнечных панелей к батареям

Правильная работа фотогальванической установки зависит от умелого выбора солнечных панелей. Поэтому такую ​​деятельность оставляют квалифицированным специалистам. Однако стоит познакомиться с некоторыми наиболее важными параметрами подбора солнечных панелей, чтобы иногда можно было сделать это самостоятельно. Панели не должны быть слишком маленькими или слишком большими, так как это приводит к неадекватной зарядной силе аккумулятора.

Как выбрать фотоэлектрическую панель для аккумулятора?

Если вы не знаете как подобрать солнечную панель к аккумулятору , стоит довериться знаниям и умениям профессионалов. У людей с большим опытом работы в фотоэлектрической отрасли не возникнет с этим проблем. Выбор фотогальванических панелей может зависеть, среди прочего, от от их правильного размера. Большие панели генерируют значительно более высокие затраты и в то же время слишком быстро заряжают батареи.С другой стороны, слишком маленькие панели означают, что поток энергии ограничен. Неправильный выбор может привести к повреждению используемого контроллера.

Как согласовать мощность солнечной панели с батареей?

Подбор аккумулятора для солнечных панелей можно осуществить несколькими способами. Одним из важнейших параметров в данном случае является мощность солнечной панели. Традиционными решениями будут панели мощностью 100 Вт. Однако это значение может измениться в результате:

  • изменений температуры,
  • степени инсоляции.

В результате фактическое значение может уменьшиться до 10%, поэтому итоговую сумму следует умножить на 0,9. Если говорить по существу, то зарядка аккумулятора емкостью 100 Ач с солнечными панелями мощностью 100 Вт занимает около 13,5 часов. Конечно, это зависит от преобладающих погодных условий, поэтому вы должны хорошо это знать и знать, как работает подбор фотоэлектрических панелей для батареи .

Как подключить солнечную панель к аккумулятору?

Еще одним вопросом при выборе солнечных батарей для аккумуляторов является их правильное подключение.Иногда это может быть деятельность, которую обычные пользователи не смогут «перепрыгнуть» и потребуют поддержки специалистов. Главное соблюдать все рекомендации производителей.

Если интересующиеся не знают, как подключить солнечную панель к аккумулятору , они должны быть полностью осведомлены о том, что в самом начале б/у солнечная батарея должна быть подключена к регулятору заряда. Затем упомянутый регулятор следует подключить к ранее купленной батарее.Как видите, это не очень сложный процесс, поэтому большинство людей справятся с ним без проблем. Однако необходимы некоторые технические навыки.

Между регулятором и аккумулятором должен быть правильно подобранный предохранитель. Если пользователи пренебрегают этим, это может привести к очень неприятным последствиям. Короткое замыкание проводов может привести, среди прочего, к стрелять.

Подбор солнечных батарей для аккумуляторов - как насчет времени зарядки?

Любой, кто выбирает солнечные батареи для аккумуляторов, должен знать , как рассчитать солнечное время .Важно анализировать время зарядки аккумулятора. Производители рекомендуют использовать аккумуляторы, которые можно зарядить в течение 10 часов с момента подключения к зарядке.

Не имея понятия какая фотогальваническая панель для аккумулятора 100 Ач подойдет лучше всего, помните, что аккумулятор 100 Ач нужно заряжать током 10А. Благодаря этому время зарядки не превысит упомянутых 10 часов.Тот же принцип используют люди, которые не знают какую фотоэлектрическую панель для аккумулятора 200 Ач выбрать в магазинах по своему выбору. Для аккумуляторов емкостью 200 Ач следует выбирать контроллеры мощностью 20А.

Минимальное время зарядки аккумуляторов должно быть не менее 5 часов. Это позволит избежать неприятных событий. Ключевым элементом, однако, является обращение внимания на изменения, связанные с уменьшением номинальной емкости аккумулятора (срок службы аккумулятора и время зарядки со временем сокращаются).

Солнечные панели и аккумуляторы – краткий обзор

Вся статья заслуживает краткого обзора. Как видите, солнечные панели для аккумуляторов выбирают исходя из нескольких важных параметров. Желающие принять во внимание, среди прочего:

  • солнечное время (время зарядки аккумулятора),
  • мощность регулятора (в соответствии с инструкциями производителя),
  • правильное подключение солнечной батареи к батарее,
  • правильный подбор предохранителей.

К счастью, вычисление солнечного времени не должно быть одной из самых сложных задач. Вы всегда можете обратиться за поддержкой к квалифицированным специалистам.

Выбираемые панели не должны быть слишком маленькими или слишком большими (чтобы они генерировали правильное напряжение). Кроме того, пользователи могут выбрать один из двух основных типов регуляторов: ШИМ (для небольших фотоэлектрических установок, для панелей с максимальной мощностью 175 Вт — они отличаются достаточно низкой ценой) и МРРТ (возможность работы в тени, повышение КПД). до 30%).Соответствующие панели и регуляторы сделают фотоэлектрическую установку более долговечной и динамичной, и в то же время устойчивой к сбоям.

.

Выгодно ли устанавливать солнечные панели?

Что входит в солнечную установку?

Солнечная батарея, также известная как фотогальваническая установка, представляет собой набор устройств, задачей которых является выработка электроэнергии из солнечного излучения. Его установка выгодна, но следует помнить об определенных условиях использования солнечных батарей. Типичная фотогальваническая установка включает:

  • фотогальванические панели, которые являются основным и неотъемлемым элементом каждой установки.Они отвечают за преобразование энергии солнечного излучения в электричество. Предложение включает монокристаллические и поликристаллические панели;
  • Инвертор - сердце фотогальванической системы. Он отвечает за преобразование постоянного тока (DC) в переменный ток (AC) с соответствующими параметрами, от которого питается большинство бытовых приборов;
  • регуляторы заряда - отвечают за контроль уровня заряда аккумулятора.В их задачу также входит предотвращение перезарядки или разрядки. Они используются только в установках с функцией накопления энергии;
  • аккумуляторы - отвечают за хранение электроэнергии. Они используются в «островных» системах, где установка не подключена к внешней электросети.

Как сделать нашу фотогальваническую установку прибыльной?

Рентабельность наших инвестиций зависит от многих факторов.Среди них можно выделить:

  • Адаптация размера установки к годовому уровню потребления - мощность фотогальванической установки должна быть подобрана в соответствии с потребностями данной фермы в энергии. Слишком большая мощность приведет к более высоким первоначальным финансовым затратам и длительному периоду окупаемости. Экономия не увеличится, так как лишняя энергия будет потеряна, а в случае перепродажи энергии в сеть полученные средства не смогут полностью компенсировать понесенные затраты.
  • Цена покупки - , несомненно, является важным параметром, определяющим рентабельность наших инвестиций. При покупке установки без субсидии стоит обратить внимание на ее общую стоимость. Многие магазины предлагают установки одинаковой мощности, но цены в отдельных торговых точках могут существенно различаться. Например, установка на 4 человека мощностью 4 кВт может стоить от 17 500 до 23 000 злотых. При этом цена является не только следствием высокой наценки магазинов. В результате, среди прочего,с различными гарантиями эффективности, качества и надежности предлагаемых панелей или инверторов. Обратим на это внимание при покупке отдельных компонентов установки.
  • Стоимость электроэнергии - рядом с покупной ценой является одним из ключевых критериев рентабельности инвестиций. Чем выше цена электроэнергии, покупаемой из сети, тем короче период окупаемости.
  • Установка фотоэлектрических панелей - и в этом случае мы можем сделать нашу установку более прибыльной.Установка панелей наиболее затратна при размещении на земле. Установка должна быть достаточно прочной, чтобы выдерживать сильные порывы ветра
  • Затенение и солнечные лучи - угол наклона панелей и их сборка должны позволять максимально использовать установку и исключить любые элементы, которые могут закрывать клетки. Затенение панелей очень негативно сказывается на эффективности всей фотоэлектрической установки, что связано с конструкцией панелей, соединенных одиночными кремниевыми элементами.Об этом стоит помнить при монтаже панелей.
  • Государственные и муниципальные субсидии - Несомненно, фактором, значительно сокращающим срок окупаемости, является субсидия на покупку фотогальванической установки. В некоторых воеводствах величина софинансирования составляла даже 85%. Однако в случае этого вида субсидий необходимо учитывать время рассмотрения заявлений и ряд бюрократических процедур.

Рентабельность автономных установок

В случае фотогальванических установок, использующих батареи, мы сталкиваемся с определенными ограничениями, связанными с используемым решением.

  • Цены на батареи по-прежнему высоки. Хотя они постепенно снижаются, они все же представляют собой определенный финансовый барьер.
  • Производство энергии летом слишком велико, чтобы хранить ее в батареях. Однако зимой, когда выработка энергии значительно ниже, ее не хватает. Эту проблему можно устранить, используя большее количество панелей, но это связано с дополнительными расходами, а потенциал солнечных батарей не приводит к лучшему использованию энергии летом.

Несмотря на то, что автономные установки полностью независимы, они генерируют гораздо более высокие затраты. Если этот тип солнечной панели не требуется, он не рекомендуется. Что касается рентабельности внесетевых установок, то она имеет второстепенное значение, если нет другой возможности получения электроэнергии - то крайне важно обеспечить доступ к любой форме электроснабжения.

Похожие статьи

Заполните форму

Напишите нам, наш специалист свяжется с вами и подготовит индивидуальное предложение ESOLEO.

Имя и фамилия *

Адрес электронной почты *
Номер телефона *

Я заявляю, что ознакомился с Регламентом и Политикой конфиденциальности и принимаю их содержание *
Я даю согласие на обработку предоставленных мной персональных данных ESOLEO Sp. о.о. со штаб-квартирой на ул. Wyścigowa 6, 02-681 Варшава, чтобы представить коммерческое предложение ESOLEO по телефону, SMS, MMS, электронной почте или во время визита коммерческого консультанта (основание - статья 6 пар.1 лит. a GDPR).*
Я даю согласие на обработку моих персональных данных в области имени, фамилии, номера телефона, адреса электронной почты с целью маркетинга продуктов и услуг ESOLEO по телефону, SMS, MMS или электронной почте ( основанием является пункт 1 (а) GDPR).

* Обязательные поля

Благодарим вас за интерес к нашему предложению, благодаря которому вы сэкономите на счетах за электроэнергию и позаботитесь об окружающей среде.

Ваш запрос зарегистрирован в нашей системе. Наш консультант свяжется с вами для организации бесплатного аудита в течение 8 рабочих дней.

С уважением ESOLEO

Этот веб-сайт использует файлы cookie
Файлы cookie необходимы для правильного функционирования веб-сайта. Чтобы предоставлять услуги в соответствии с индивидуальными интересами, мы используем их для запоминания деталей отправки контактных данных и сбора статистических данных для оптимизации функциональности веб-сайта. Нажмите кнопку «Перейти на страницу», чтобы принять использование файлов cookie и перейти непосредственно на страницу Перейти на страницуПолитика конфиденциальности .

Смотрите также