Расчет электрического калорифера вентиляции
Расчет-онлайн электрических калориферов. Подбор электрокалориферов по мощности - Т.С.Т.
Перейти к содержимомуНа данной странице сайта представлен онлайн-расчет электрических калориферов. В режиме онлайн можно определить следующие данные:- 1. требуемую мощность (производительность по теплу) электрокалорифера для приточной отопительной установки. Базовые параметры для расчета: объем (расход, производительность) нагреваемого воздушного потока, температура воздуха на входе в электрический нагреватель, желаемая температура на выходе- 2. температуру воздуха на выходе из электрического калорифера. Базовые параметры для расчета: расход (объем) нагреваемого воздушного потока, температура воздуха на входе в электрокалорифер, фактическая (установленная) тепловая мощность используемого электрического модуля

1. Онлайн-расчет мощности электрического калорифера (расхода тепла на обогрев приточного воздуха)
В поля вносятся показатели: объем проходящего через электрокалорифер холодного воздуха (м3/час), температура входящего воздуха, необходимая температура на выходе из электрического калорифера. На выходе (по результатам онлайн-расчета калькулятора) выводится требуемая мощность электрического нагревательного модуля для соблюдения заложенных условий.
1 поле. Объем проходящего через электронагреватель приточного воздуха (м3/час)2 поле. Температура воздуха на входе в электрический калорифер (°С)
3 поле. Необходимая температура воздуха на выходе из электрокалорифера
(°С) поле (результат). Требуемая мощность электрического калорифера (расход тепла на подогрев приточного воздуха) для введенных данных2. Онлайн-расчет температуры воздуха на выходе из электрического калорифера
В поля вносятся показатели: объем (расход) нагреваемого воздуха (м3/час), температура воздуха на входе в электрокалорифер, мощность подобранного электрического воздухонагревателя. На выходе (по результатам онлайн-расчета) показывается температура выходящего нагретого воздуха.
1 поле. Объем проходящего через калорифер приточного воздуха (м3/час)2 поле. Температура воздуха на входе в электрический калорифер (°С)
3 поле. Тепловая мощность подобранного воздухоподогревателя
(кВт) поле (результат). Температура воздуха на выходе из электрокалорифера (°С)Онлайн-подбор электрического калорифера по объему нагреваемого воздуха и тепловой мощности
Ниже выложена таблица с номенклатурой электрокалориферов производства нашего предприятия. По таблице можно ориентировочно подобрать подходящий для ваших данных электрический модуль. Изначально ориентируясь на показатели объема нагреваемого воздуха в час (производительности по воздуху), можно подобрать промышленный электрический калорифер для наиболее распространенных тепловых режимов. На каждый отопительный модуль серии СФО представлен наиболее приемлемый (для этой модели и номера) диапазон нагреваемого воздуха, а также некоторые диапазоны температуры воздуха на входе и выходе из нагревателя. Кликнув мышкой по названию выбранного электрического воздухоподогревателя, можно перейти на страницу с теплотехническими характеристиками данного электрического промышленного калорифера.
Наименование электро калорифера | Установленная мощность, кВт | Диапазон производительности по воздуху, м³/ч | Температура входящего воздуха, °С | Диапазон температуры выходящего воздуха, °С(в зависимости от объема воздуха) |
СФО-16 | 15 | 800 - 1500 | -25 | +22 0 |
-20 | +28 +6 | |||
-15 | +34 +11 | |||
-10 | +40 +17 | |||
-5 | +46 +22 | |||
0 | +52 +28 | |||
СФО-25 | 22.5 | 1500 - 2300 | -25 | +13 0 |
-20 | +18 +5 | |||
-15 | +24 +11 | |||
-10 | +30 +16 | |||
-5 | +36 +22 | |||
0 | +41 +27 | |||
СФО-40 | 45 | 2300 - 3500 | -30 | +18 +2 |
-25 | +24 +7 | |||
-20 | +30 +13 | |||
-10 | +42 +24 | |||
-5 | +48 +30 | |||
0 | +54 +35 | |||
СФО-60 | 67.5 | 3500 - 5000 | -30 | +17 +3 |
-25 | +23 +9 | |||
-20 | +29 +15 | |||
-15 | +35 +20 | |||
-10 | +41 +26 | |||
-5 | +47 +32 | |||
СФО-100 | 90 | 5000 - 8000 | -25 | +20 +3 |
-20 | +26 +9 | |||
-15 | +32 +14 | |||
-10 | +38 +20 | |||
-5 | +44 +25 | |||
0 | +50 +31 | |||
СФО-160 | 157.5 | 8000 - 12000 | -30 | +18 +2 |
-25 | +24 +8 | |||
-20 | +30 +14 | |||
-15 | +36 +19 | |||
-10 | +42 +25 | |||
-5 | +48 +31 | |||
СФО-250 | 247.5 | 12000 - 20000 | -30 | +21 0 |
-25 | +27 +6 | |||
-20 | +33 +12 | |||
-15 | +39 +17 | |||
-10 | +45 +23 | |||
-5 | +51 +29 |
Как выполняется расчёт мощности калорифера вентиляции
Эффективная работа вентиляции зависит от правильного расчёт и подбора оборудования, так как эти два пункта взаимосвязаны между собой. Подбор мощности невозможен без определения типа вентилятора, а расчёт температуры внутреннего воздуха бесполезен без подбора калорифера, рекуператора и кондиционера. Определение параметров воздуховода невозможно без вычисления аэродинамических характеристик. Расчёт мощности калорифера вентиляции ведётся по нормативным параметрам температуры воздуха, и ошибки на этапе проектирования приводят к увеличению затрат, а также невозможности поддержать микроклимат на требуемом уровне.
Определение
Калорифер (более профессиональное название «канальный нагреватель») – универсальный прибор, используемый во внутренних системах вентилирования для передачи тепловой энергии от нагревательных элементов к воздуху, проходящему через систему полых трубок.
Канальные нагреватели различаются способом передачи энергии и разделяются на:
- Водяные - энергия передаётся через трубы с горячей водой, паром.
- Электрические - тэны, получающие энергию от центральной сети электроснабжения.
Существуют также калориферы, работающие по принципу рекуперации: это утилизации тепла из помещения за счёт его передачи приточному воздуху. Рекуперации осуществляется без контакта двух воздушных сред.
Более подробная информация об устройстве и нормативных данных СНиП и ГОСТ представлена в статье «Описание калориферов и узлов обвязки приточной вентиляции».
Электрический калорифер
Основа – нагревательный элемент из проволоки или спиралей, через него проходит электрический ток. Между спиралями пропускается холодный уличный воздух, он нагревается и подаётся в помещение.
Электрокалорифер подходит для обслуживания вентсистем небольшой мощности, так как особого расчёта для его эксплуатации не требуется, поскольку все необходимые параметры указываются производителем.
Главный недостаток этого агрегата - инерция между нагревательными нитями, она приводит к постоянному перегреву, и, как следствие, выходу прибора из строя. Проблема решается установкой дополнительных компенсаторов.
Водяной калорифер
Основа водяного калорифера – нагревательный элемент из полых металлических трубок, через них пропускается горячая вода или пар. Наружный воздух поступает с противоположной стороны. Проще говоря, воздух движется сверху вниз, а вода - снизу вверх. Таким образом, пузырьки кислорода удаляются через специальные клапаны.
Водяной канальный нагреватель используется в большей части крупных и средних вентиляционных систем. Этому способствует высокая производительность, надёжность и ремонтопригодность оборудования.
Кроме нагревательного элемента в состав системы входит узел обвязки: (обеспечивает подвод теплоносителя к обменщику), насос, прямые и обратные клапаны, запорная арматура и блок для автоматического управления. Для климатических зон, где минимальная температура зимой опускается ниже нуля, предусматривается система предотвращения замерзания рабочих трубок.
Расчёт мощности

Методика вычисления заключается в подборе аппарата с такими параметрами, чтобы на выходе температура воздуха соответствовала нормативным значениям, а запас мощности позволял бесперебойно работать при пиковых нагрузках, но при этом не страдала кратность и скорость воздухообмена. Проектировщик начинает рассчитывать мощность только после получения всех исходных данных:
- Объёма воздуха, проходящего через аппарат за единицу времени. Измеряется соответственно кг/ч или м3/ч.
- Температуры приточки. Берётся минимальное значение для зимнего периода.
- Требуемой по нормам или индивидуальным пожеланиям заказчика температуре воздуха на выходе.
- Максимальной температуре, до которой может нагреться тепловой носитель.
Правила вычислений
Теплотехнический расчёт канального нагревателя начинается с определения двух параметров: первый - площадь поперечного сечения тепловой установки; второй – мощность, необходимая для нагрева поверхности заданного размера.
Площадь вычисляется по формуле:
Aф = Lp / 3600×(ϑρ), где
L – максимальное значение приточки для поддержки параметров вытяжки, м3/ч; Р – нормативная плотность воздуха, кг/м3; Θρ – скорость движения воздуха на каждом участке, определяемая из аэродинамического расчета.
Полученное значение подставляется в таблицу, где указаны возможные варианты сечения калориферов, значения округляется в большую сторону.
Таблица подбора по площади сечения Если результаты вычислений выходят за рамки табличных значений, то проектировщики идут по другому пути: закладывается несколько параллельных канальных нагревателей, суммарная площадь сечений которых равна расчётному значению.Формула скорости воздушных масс, необходимая для подбора площади нагревательного элемента, следующая:
ϑρ = Lρ / 3600×Аф.факт
На следующем этапе определяется объем тепловой энергии, необходимый для прогрева приточки:
Q = 0.278×Gc× (tп – tн), где
Q – объём тепловой энергии, Вт; G – расчётный показатель расхода воздуха, кг/ч; с – удельная теплоёмкость, в данном случае берётся 1.005 кДж/кг °С; tп – температура приточки, °С;
tн – температура воздуха на входе.
Расход воздуха G = Lρн. Это связанно с местом установки вентилятора. Он находится до калорифера, а, следовательно, используется нормативное значение плотности воздушных масс снаружи помещения.
Далее вычисляются затраты горячей воды на отдачу тепла холодному:
Gw = Q / cw×(tг – t0), где
cw – тепловая ёмкость воды, кДж/кг °С; tг – температура теплоносителя (воды),0С; t0 – расчётная температура воды в обратном трубопроводе,0С.
Теплоемкость жидкости можно узнать из справочной литературы. Параметры теплового носителя зависят от параметров среды.
Зная Gw, можно вычислить скорость движения воды по трубам:
w = Gw / 3600×ρw×Aф, где
Aф – размер сечения теплообменника, м²; ρw – плотность воды при средней температуре теплового носителя, 0С.
Средняя температура:
(tг + t0) / 2
Рассчитать скорость движения теплоносителя можно по формуле, указанной выше. Она справедлива для простой системы последовательного подключения нагревательных элементов. В случае использования параллельной схемы, толщина трубопровода увеличится в два или более раз, а средняя скорость движения уменьшится.
Кроме подбора калорифера выполняется расчёт тепловых потерь по укрупнённым показателям. Основная формула:
Qзд=q×V× (tп-tн), где
q – тепловая характеристика объекта, Вт/(м3ּоС); V – объём объекта по внешней стороне ограждающих конструкций, м3; (tп-tн) – разность температуры основных помещений, оС.
Расчёт поверхности нагрева
Основная формула площади нагревательной поверхности канального устройства:
Amp = 1.2Q / K× (tср.т – tср.в), где
К – коэффициент передачи тепла от калорифера холодному воздуху, Вт/(м°С); tср.т – средний показатель температуры теплового носителя, 0С; tср.в – средний показатель температуры приточки, 0С; число 1,2 – коэффициент запас. Вводится в связи с остыванием воздуховодов.
Иногда одного калорифера недостаточно или площадь сечения слишком большая. Тогда в расчёт берётся несколько однотипных устройств.На последнем этапе определяется, сколько тепла может выдать канальный нагреватель:
Qфакт = К× (tср.т – tср.в)×Nфакт×Ak
Особенность методики для паровых нагревателей
Принцип вычислений не меняется. Отличие только в способе определения расхода теплового носителя для нагрева холодного воздуха:
G = Q / r, где
r – тепловая энергия, получаемая в процессе конденсации пара.
Обвязка
Калорифер в системе вентилирования обвязывается двумя способами:
- Двухходовыми вентилями.
- Трёхходовыми вентилями.
Более подробно о специфике в статье «Описание калориферов и узлов обвязки приточной вентиляции».
Подбор электрического калорифера
Для установки электрокалорифера не требуется специальный расчёт расхода тепла на работу вентиляции, но необходимо знать два параметра:
- Расход воздуха.
- Температуру на выходе из системы прогрева.
Производители указывают их в техническом паспорте на устройство.
Но здесь важна одна деталь: объём приточного воздуха всегда должен быть на уровне, указанном производителем устройства. Несоблюдения правила эксплуатации приведёт к поломке прибора.Система рекуперации
Прямой нагрев воздуха за счёт только энергии нагревательных элементов – это не самый экономичный и практичный вариант устройства отопления вентсистемы. Система рекуперации за счёт замкнутого цикла работы значительно снижает теплопотери. Её работа основана на теплоизбытках, а точнее - энергии отработанных воздушных масс.
Общая схема устройства выглядит так: приточка и вытяжка проходят через один блок, и тепловыделения от исходящих воздушных потоков частично передаются входящим. За счёт использования теплопритоков снижается нагрузка на остальные системы отопления.
Монтаж системы отопления с рекуперацией стоит дороже, чем аналогичный, но без неё. Затраты быстро окупаются в регионах, где отопление подвергается значительной тепловой нагрузке ввиду продолжительной зимы.
Подведем итоги
За помощью в подборе и расчёте канального нагревателя лучше обратиться в специализированную организацию.
ПримерКомпания «Мега.ру» оказываете комплексные услуги в сфере проектирования вентиляции и других инженерных систем. Грамотные инженеры ответят на любые вопросы по телефонам, указанным на странице «Контакты». Компания работает в Москве и соседних регионах, так же практикуется удалённое выполнение заказов на всей территории РФ.
Расчет калорифера: онлайн-калькулятор расчета мощности и расхода теплоносителя
При конструировании системы воздушного отопления используются уже готовые калориферные установки.
Для правильного подбора необходимого оборудования достаточно знать: необходимую мощность калорифера, который впоследствии будет монтироваться в системе отопления приточной вентиляции, температуру воздуха на его выходе из калориферной установки и расход теплоносителя.
Для упрощения производимых расчетов вашему вниманию представлен онлайн-калькулятор расчета основных данных для правильного подбора калорифера.
С помощью него вы сможете рассчитать:
- Тепловую мощность калорифера кВт. В поля калькулятора следует ввести исходные данные об объеме проходящего через калорифер воздуха, данные о температуре поступаемого на вход воздуха, необходимую температуру воздушного потока на выходе из калорифера.
- Температуру воздуха на выходе. В соответствующие поля следует ввести исходные данные об объеме нагреваемого воздуха, температуре воздушного потока на входе в установку и полученную при первом расчете тепловую мощность калорифера.
- Расход теплоносителя. Для этого в поля онлайн-калькулятора следует ввести исходные данные: о тепловой мощности установки, полученные при первом подсчете, о температуре теплоносителя подаваемого на вход в калорифер, и значение температуры на выходе из устройства.
Расчета калориферов, в качестве теплоносителя которых используется вода или пар, происходит по определенной методике. Здесь важной составляющей являются не только точные расчеты, но и определенная последовательность действий.
Расчет производительности для нагрева воздуха определенного объема
Определяем массовый расход нагреваемого воздуха
G (кг/ч) = L х р
где:
L — объемное количество нагреваемого воздуха, м.куб/час p — плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) — таблица показателей плотности представлена выше, кг/м.куб
Определяем расход теплоты для нагревания воздуха
Q (Вт) = G х c х (t кон — t нач)
где:
G — массовый расход воздуха, кг/час с — удельная теплоемкость воздуха, Дж/(кг•K), (показатель берется по температуре входящего воздуха из таблицы) t нач — температура воздуха на входе в теплообменник, °С t кон — температура нагретого воздуха на выходе из теплообменника, °С
к оглавлению ↑Вычисление фронтального сечения устройства, требующегося для прохода воздушного потока
Определившись с необходимой тепловой мощностью для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха.
Фронтальное сечение — рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки нагнетаемого холодного воздуха.
f (м.кв) = G / v
где:
G — массовый расход воздуха, кг/час v — массовая скорость воздуха — для оребренных калориферов принимается в диапазоне 3 — 5 (кг/м.кв•с). Допустимые значения — до 7 — 8 кг/м.кв•с
к оглавлению ↑Вычисление значений массовой скорости
Находим действительную массовую скорость для калориферной установки
V(кг/м.кв•с) = G / f
где:
G — массовый расход воздуха, кг/час f — площадь действительного фронтального сечения, берущегося в расчет, м.кв
к оглавлению ↑Расчет расхода теплоносителя в калориферной установке
Рассчитываем расход теплоносителя
Gw (кг/сек) = Q / ((cw х (t вх — t вых))
где:
Q — расход тепла для нагрева воздуха, Вт cw — удельная теплоемкость воды Дж/(кг•K) t вх — температура воды на входе в теплообменник, °С t вых — температура воды на выходе из теплообменника, °С
к оглавлению ↑Подсчет скорости движения воды в трубах калорифера
W (м/сек) = Gw / (pw х fw)
где:
Gw — расход теплоносителя, кг/сек pw — плотность воды при средней температуре в воздухонагревателе (принимается по таблице внизу), кг/м.куб fw — средняя площадь живого сечения одного хода теплообменника (принимается по таблице подбора калориферов КСк), м.кв
к оглавлению ↑Определение коэффициента теплопередачи
Коэффициент теплотехнической эффективности рассчитывается по формуле
Квт/(м.куб х С) = А х Vn х Wm
где:
V – действительная массовая скорость кг/м.кв х с W – скорость движения воды в трубах м/сек A
к оглавлению ↑Расчет тепловой производительности калориферной установки
Подсчет фактической тепловой мощности:
q (Вт) = K х F х ((t вх +t вых)/2 — (t нач +t кон)/2))
или, если подсчитан температурный напор, то:
q (Вт) = K х F х средний температурный напор
где:
K — коэффициент теплоотдачи, Вт/(м.кв•°C) F — площадь поверхности нагрева выбранного калорифера (принимается по таблице подбора), м.кв t вх — температура воды на входе в теплообменник, °С t вых — температура воды на выходе из теплообменника, °С t нач — температура воздуха на входе в теплообменник, °С t кон — температура нагретого воздуха на выходе из теплообменника, °С
к оглавлению ↑Определение запаса устройства по тепловой мощности
Определяем запас тепловой производительности:
((q — Q) / Q) х 100
где:
q — фактическая тепловая мощность подобранных калориферов, Вт Q — расчетная тепловая мощность, Вт
к оглавлению ↑Расчет аэродинамического сопротивления
Расчет аэродинамического сопротивления. Величину потерь по воздуху можно рассчитать по формуле:
ΔРа (Па)=В х Vr
где:
v — действительная массовая скорость воздуха, кг/м.кв•с B, r — значение модуля и степеней из таблицы
Помогла вам статья произвести расчет калорифера?Помогла, мне все понятноНе помогла, нужно объяснить более подробно к оглавлению ↑Определение гидравлического сопротивления теплоносителя
Расчет гидравлического сопротивления калорифера вычисляется по следующей формуле:
ΔPw(кПа)= С х W2
где:
С — значение коэффициента гидравлического сопротивления заданной модели теплообменника (смотреть по таблице) W — скорость движения воды в трубках воздухонагревателя, м/сек.
Расчет калорифера
Калориферы - приборы, применяемые для нагревания воздуха в приточных системах вентиляции, системах кондиционирования воздуха, воздушного отопления, а также в сушильных камерах.
Подбор калорифера осуществляется на холодный период.
Определяем расход тепла на нагревание приточного воздуха (Богословский, стр. 202, ф-ла XII.1):
где - массовое количество нагреваемого воздуха, кг/ч;
- начальная и конечная температура воздуха, т.е. до калорифера и после него соответственно;
- удельная теплоемкость воздуха ().
Задаваясь массовой скорость 4,6 кг/с·м2 находим необходимую площадь живого сечения калориферной установки (Богословский, стр. 203, ф-ла XII.4):
Калорифер с данной площадью живого сечения существует, следовательно, необходимо установить только 1 калорифер.
Определяемся с установкой калориферов. Теплоноситель принимаем – воду. Она должна пройти через площадь сечения трубок каждого калорифера (принимаем по табл. 2.23 спр. Староверова, стр. 424):
- температура горячей воды
- температуры оборотной воды
Определяем скорость движения теплоносителя в трубках калорифера (Богословский, стр. 203, ф-ла XII.8):
где - плотность воды
- теплоемкость воды
- площадь живого сечения по теплоносителю
Находим коэффициент теплопередачи (Староверов, стр. 423, табл. II.22):
по таблице:
по формуле:
Площадь поверхности нагрева:
Находим необходимую площадь поверхности нагрева калорифера:
где - средняя температура теплоносителя
- средняя температура нагрева воздуха, проходящего через калорифер
Определяем запас площади нагрева калорифера:
Определяем сопротивление калорифера проходу воздуха:
где - число последовательно расположенных калориферов;
- сопротивление одного калорифера.
Проверяем значение сопротивления калорифера проходу воздуха:
Так как в цехе имеются пылевыделения, то приток воздуха необходимо делать в верхнюю зону помещения. В помещениях большой высоты возможна подача притока свободными струями.
Для дальнейших расчетов выберем приколонные четырехструйные воздухораспределители серии НРВ.
Для того, чтобы начать расчет, необходимо определить возможное количество воздухораспределителей
где – объем приточного воздуха на холодный период года, 24361 кг/ч;
- производительность одного воздухораспределителя, принимаемая (Староверов, стр. 195, табл. 8.9.)
24361/5 = 4872,2 м3/ч – расход воздуха на участке.
Выбираем 5 воздухораспределителей с номинальной пропускной способностью 5000 м3/ч. Площадь выпускного патрубка м2.
Расчет по Староверову:
Воздухораспределители следует рассчитывать по схеме 3, пользуясь нижеприведенными формулами (Староверов, табл. 8.1, стр. 178). Принять в этих формулах Кв = 1, , ξ =3 (Староверов, стр. 195)
Расчет проводим по методичке:
Место входа оси плоской струи в рабочую зону примем в плоскости оси прохода. Оно представляет собой прямую, расположенную на плоскости, ограничивающей сверху рабочую зону и отстоящую на расстоянии 2 м от пола.
Ось воздухоприточной струи помещаем на высоте 8 метров или 0,6 от высоты помещения. Это условие обеспечивает свободное развитие струи и не налипание ее на потолок или пол.
Исходя из расположения оси струи и места расположения линии пересечения оси плоской струи с верхней границей рабочей зоны, принимаем координату x=2,5 м, а координату y=1,0 м.
Расчетная длина оси струи:
Для щели коэффициенты затухания: m=4,5 n=3,2 (Староверов, стр. 180, табл. 8.1.)
Задаемся температурой притока, с учетом подогрева в вентиляторе – 11. Избыточная температура составит 20-11=9.
Параметры воздуха на входе струи в рабочую зону определяем в соответствии с обязательным приложением 6:
Максимальная скорость на оси струи 1,8*0,2 = 0,36 м/с
Избыточная температура
Задаемся шириной щели 0,05 м, тогда скорость приточного воздуха на выходе из щели, обеспечивающая вход струи в точку с указанными координатами, равна:
Длина щели принимается равной 0,8*47,2 = 37,76. Тогда ширина щели, рассчитанная по величине притока:
Ширина щели = 0,2 м.
Определяем скорость на входе струи в рабочую зону. В нашем случае , так как 8,5