.

Расчет электрического калорифера вентиляции


Расчет-онлайн электрических калориферов. Подбор электрокалориферов по мощности - Т.С.Т.

Перейти к содержимому

На данной странице сайта представлен онлайн-расчет электрических калориферов. В режиме онлайн можно определить следующие данные:- 1. требуемую мощность (производительность по теплу) электрокалорифера для приточной отопительной установки. Базовые параметры для расчета: объем (расход, производительность) нагреваемого воздушного потока, температура воздуха на входе в электрический нагреватель, желаемая температура на выходе- 2. температуру воздуха на выходе из электрического калорифера. Базовые параметры для расчета: расход (объем) нагреваемого воздушного потока, температура воздуха на входе в электрокалорифер, фактическая (установленная) тепловая мощность используемого электрического модуля

1. Онлайн-расчет мощности электрического калорифера (расхода тепла на обогрев приточного воздуха)

В поля вносятся показатели: объем проходящего через электрокалорифер холодного воздуха (м3/час), температура входящего воздуха, необходимая температура на выходе из электрического калорифера. На выходе (по результатам онлайн-расчета калькулятора) выводится требуемая мощность электрического нагревательного модуля для соблюдения заложенных условий.

1 поле. Объем проходящего через электронагреватель приточного воздуха (м3/час)2 поле. Температура воздуха на входе в электрический калорифер (°С)

3 поле. Необходимая температура воздуха на выходе из электрокалорифера

(°С) поле (результат). Требуемая мощность электрического калорифера (расход тепла на подогрев приточного воздуха) для введенных данных

2. Онлайн-расчет температуры воздуха на выходе из электрического калорифера

В поля вносятся показатели: объем (расход) нагреваемого воздуха (м3/час), температура воздуха на входе в электрокалорифер, мощность подобранного электрического воздухонагревателя. На выходе (по результатам онлайн-расчета) показывается температура выходящего нагретого воздуха.

1 поле. Объем проходящего через калорифер приточного воздуха (м3/час)2 поле. Температура воздуха на входе в электрический калорифер (°С)

3 поле. Тепловая мощность подобранного воздухоподогревателя

(кВт) поле (результат). Температура воздуха на выходе из электрокалорифера (°С)

Онлайн-подбор электрического калорифера по объему нагреваемого воздуха и тепловой мощности

Ниже выложена таблица с номенклатурой электрокалориферов производства нашего предприятия. По таблице можно ориентировочно подобрать подходящий для ваших данных электрический модуль. Изначально ориентируясь на показатели объема нагреваемого воздуха в час (производительности по воздуху), можно подобрать промышленный электрический калорифер для наиболее распространенных тепловых режимов. На каждый отопительный модуль серии СФО представлен наиболее приемлемый (для этой модели и номера) диапазон нагреваемого воздуха, а также некоторые диапазоны температуры воздуха на входе и выходе из нагревателя. Кликнув мышкой по названию выбранного электрического воздухоподогревателя, можно перейти на страницу с теплотехническими характеристиками данного электрического промышленного калорифера.

Наименование электро калорифера

Установленная мощность, кВт

Диапазон производительности по воздуху, м³/ч

Температура входящего воздуха, °С

Диапазон температуры выходящего воздуха, °С(в зависимости от объема воздуха)

СФО-16

15

800 - 1500

-25

+22     0

-20

+28   +6

-15

+34  +11

-10

+40  +17

-5

+46  +22

0

+52  +28

СФО-25

22.5

1500 - 2300

-25

+13     0

-20

+18   +5

-15

+24  +11

-10

+30  +16

-5

+36  +22

0

+41  +27

СФО-40

45

2300 - 3500

-30

+18    +2

-25

+24    +7

-20

+30  +13

-10

+42  +24

-5

+48  +30

0

+54  +35

СФО-60

67.5

3500 - 5000

-30

+17    +3

-25

+23    +9

-20

+29  +15

-15

+35  +20

-10

+41  +26

-5

+47  +32

СФО-100

90

5000 - 8000

-25

+20    +3

-20

+26   +9

-15

+32  +14

-10

+38  +20

-5

+44  +25

0

+50  +31

СФО-160

157.5

8000 - 12000

-30

+18    +2

-25

+24   +8

-20

+30  +14

-15

+36  +19

-10

+42  +25

-5

+48  +31

СФО-250

247.5

12000 - 20000

-30

+21     0

-25

+27    +6

-20

+33  +12

-15

+39  +17

-10

+45  +23

-5

+51  +29

zao-tst.ru

Как выполняется расчёт мощности калорифера вентиляции

Эффективная работа вентиляции зависит от правильного расчёт и подбора оборудования, так как эти два пункта взаимосвязаны между собой. Подбор мощности невозможен без определения типа вентилятора, а расчёт температуры внутреннего воздуха бесполезен без подбора калорифера, рекуператора и кондиционера. Определение параметров воздуховода невозможно без вычисления аэродинамических характеристик. Расчёт мощности калорифера вентиляции ведётся по нормативным параметрам температуры воздуха, и ошибки на этапе проектирования приводят к увеличению затрат, а также невозможности поддержать микроклимат на требуемом уровне.

Определение

Калорифер (более профессиональное название «канальный нагреватель») – универсальный прибор, используемый во внутренних системах вентилирования для передачи тепловой энергии от нагревательных элементов к воздуху, проходящему через систему полых трубок.

Канальные нагреватели различаются способом передачи энергии и разделяются на:

  1. Водяные - энергия передаётся через трубы с горячей водой, паром.
  2. Электрические - тэны, получающие энергию от центральной сети электроснабжения.

Существуют также калориферы, работающие по принципу рекуперации: это утилизации тепла из помещения за счёт его передачи приточному воздуху. Рекуперации осуществляется без контакта двух воздушных сред.

Более подробная информация об устройстве и нормативных данных СНиП и ГОСТ представлена в статье «Описание калориферов и узлов обвязки приточной вентиляции».

Электрический калорифер

Основа – нагревательный элемент из проволоки или спиралей, через него проходит электрический ток. Между спиралями пропускается холодный уличный воздух, он нагревается и подаётся в помещение.

Электрокалорифер подходит для обслуживания вентсистем небольшой мощности, так как особого расчёта для его эксплуатации не требуется, поскольку все необходимые параметры указываются производителем.

Главный недостаток этого агрегата - инерция между нагревательными нитями, она приводит к постоянному перегреву, и, как следствие, выходу прибора из строя. Проблема решается установкой дополнительных компенсаторов.

Водяной калорифер

Основа водяного калорифера – нагревательный элемент из полых металлических трубок, через них пропускается горячая вода или пар. Наружный воздух поступает с противоположной стороны. Проще говоря, воздух движется сверху вниз, а вода - снизу вверх. Таким образом, пузырьки кислорода удаляются через специальные клапаны.

Водяной канальный нагреватель используется в большей части крупных и средних вентиляционных систем. Этому способствует высокая производительность, надёжность и ремонтопригодность оборудования.

Кроме нагревательного элемента в состав системы входит узел обвязки: (обеспечивает подвод теплоносителя к обменщику),  насос, прямые и обратные клапаны, запорная арматура и блок для автоматического управления. Для климатических зон, где минимальная температура зимой опускается ниже нуля, предусматривается система предотвращения замерзания рабочих трубок.

Расчёт мощности

Процесс нагрева воздуха в виде графика

Методика вычисления заключается в подборе аппарата с такими параметрами, чтобы на выходе температура воздуха соответствовала нормативным значениям, а запас мощности позволял бесперебойно работать при пиковых нагрузках, но при этом не страдала кратность и скорость воздухообмена. Проектировщик начинает рассчитывать мощность только после получения всех исходных данных:

  • Объёма воздуха, проходящего через аппарат за единицу времени. Измеряется соответственно кг/ч или м3/ч.
  • Температуры приточки. Берётся минимальное значение для зимнего периода.
  • Требуемой по нормам или индивидуальным пожеланиям заказчика температуре воздуха на выходе.
  • Максимальной температуре, до которой может нагреться тепловой носитель.

Правила вычислений

Теплотехнический расчёт канального нагревателя начинается с определения двух параметров: первый - площадь поперечного сечения тепловой установки; второй – мощность, необходимая для нагрева поверхности заданного размера.

Площадь вычисляется по формуле:

Aф = Lp / 3600×(ϑρ), где

L – максимальное значение приточки для поддержки параметров вытяжки, м3/ч; Р – нормативная плотность воздуха, кг/м3; Θρ – скорость движения воздуха на каждом участке, определяемая из аэродинамического расчета.

Полученное значение подставляется в таблицу, где указаны возможные варианты сечения калориферов, значения округляется в большую сторону.

Таблица подбора по площади сечения Если результаты вычислений выходят за рамки табличных значений, то проектировщики идут по другому пути: закладывается несколько параллельных канальных нагревателей, суммарная площадь сечений которых равна расчётному значению.

Формула скорости воздушных масс, необходимая для подбора площади нагревательного элемента, следующая:

ϑρ = Lρ / 3600×Аф.факт

На следующем этапе определяется объем тепловой энергии, необходимый для прогрева приточки:

Q = 0.278×Gc× (tп – tн), где

Q – объём тепловой энергии, Вт; G – расчётный показатель расхода воздуха, кг/ч; с – удельная теплоёмкость, в данном случае берётся 1.005 кДж/кг °С; tп – температура приточки, °С;

tн – температура воздуха на входе.

Расход воздуха G = Lρн. Это связанно с местом установки вентилятора. Он находится до калорифера, а, следовательно, используется нормативное значение плотности воздушных масс снаружи помещения.

Далее вычисляются затраты горячей воды на отдачу тепла холодному:

Gw = Q / cw×(tг – t0), где

cw – тепловая ёмкость воды, кДж/кг °С; tг – температура теплоносителя (воды),0С; t0 – расчётная температура воды в обратном трубопроводе,0С.

Теплоемкость жидкости можно узнать из справочной литературы. Параметры теплового носителя зависят от параметров среды.

Зная Gw, можно вычислить скорость движения воды по трубам:

w = Gw / 3600×ρw×Aф, где

Aф – размер сечения теплообменника, м²; ρw – плотность воды при средней температуре теплового носителя, 0С.

Средняя температура:

(tг + t0) / 2

Рассчитать скорость движения теплоносителя можно по формуле, указанной выше. Она справедлива для простой системы последовательного подключения нагревательных элементов. В случае использования параллельной схемы, толщина трубопровода увеличится в два или более раз, а средняя скорость движения уменьшится.

Кроме подбора калорифера выполняется расчёт тепловых потерь по укрупнённым показателям. Основная формула:

Qзд=q×V× (tп-tн), где

q – тепловая характеристика объекта, Вт/(м3ּоС); V – объём объекта по внешней стороне ограждающих конструкций, м3; (tп-tн) – разность температуры основных помещений, оС.

Расчёт поверхности нагрева

Основная формула площади нагревательной поверхности канального устройства:

Amp = 1.2Q / K× (tср.т – tср.в), где

К – коэффициент передачи тепла от калорифера холодному воздуху, Вт/(м°С); tср.т – средний показатель температуры теплового носителя, 0С; tср.в – средний показатель температуры приточки, 0С; число 1,2 – коэффициент запас. Вводится в связи с остыванием воздуховодов.

Иногда одного калорифера недостаточно или площадь сечения слишком большая. Тогда в расчёт берётся несколько однотипных устройств.

На последнем этапе определяется, сколько тепла может выдать канальный нагреватель:

Qфакт = К× (tср.т – tср.в)×Nфакт×Ak

Особенность методики для паровых нагревателей

Принцип вычислений не меняется. Отличие только в способе определения расхода теплового носителя для нагрева холодного воздуха:

G = Q / r, где

r – тепловая энергия, получаемая в процессе конденсации пара.

Обвязка

Калорифер в системе вентилирования обвязывается двумя способами:

  1. Двухходовыми вентилями.
  2. Трёхходовыми вентилями.

Более подробно о специфике в статье «Описание калориферов и узлов обвязки приточной вентиляции».

Подбор электрического калорифера

Для установки электрокалорифера не требуется специальный расчёт расхода тепла на работу вентиляции, но необходимо знать два параметра:

  1. Расход воздуха.
  2. Температуру на выходе из системы прогрева.

Производители указывают их в техническом паспорте на устройство.

Но здесь важна одна деталь: объём приточного воздуха всегда должен быть на уровне, указанном производителем устройства. Несоблюдения правила эксплуатации приведёт к поломке прибора.

Система рекуперации

Прямой нагрев воздуха за счёт только энергии нагревательных элементов – это не самый экономичный и практичный вариант устройства отопления вентсистемы. Система рекуперации за счёт замкнутого цикла работы значительно снижает теплопотери. Её работа основана на теплоизбытках, а точнее - энергии отработанных воздушных масс.

Общая схема устройства выглядит так: приточка и вытяжка проходят через один блок, и тепловыделения от исходящих воздушных потоков частично передаются входящим. За счёт использования теплопритоков снижается нагрузка на остальные системы отопления.

Монтаж системы отопления с рекуперацией стоит дороже, чем аналогичный, но без неё. Затраты быстро окупаются в регионах, где отопление подвергается значительной тепловой нагрузке ввиду продолжительной зимы.

Подведем итоги

За помощью в подборе и расчёте канального нагревателя лучше обратиться в специализированную организацию.

Пример

Компания «Мега.ру» оказываете комплексные услуги в сфере проектирования вентиляции и других инженерных систем. Грамотные инженеры ответят на любые вопросы по телефонам, указанным на странице «Контакты». Компания работает в Москве и соседних регионах, так же практикуется удалённое выполнение заказов на всей территории РФ.

m-e-g-a.ru

Расчет калорифера: онлайн-калькулятор расчета мощности и расхода теплоносителя

При конструировании системы воздушного отопления используются уже готовые калориферные установки.

Для правильного подбора необходимого оборудования достаточно знать: необходимую мощность калорифера, который впоследствии будет монтироваться в системе отопления приточной вентиляции, температуру воздуха на его выходе из калориферной установки и расход теплоносителя.

Для упрощения производимых расчетов вашему вниманию представлен онлайн-калькулятор расчета основных данных для правильного подбора калорифера.

С помощью него вы сможете рассчитать:

  1. Тепловую мощность калорифера кВт. В поля калькулятора следует ввести исходные данные об объеме проходящего через калорифер воздуха, данные о температуре поступаемого на вход воздуха, необходимую температуру воздушного потока на выходе из калорифера.
  2. Температуру воздуха на выходе. В соответствующие поля следует ввести исходные данные об объеме нагреваемого воздуха, температуре воздушного потока на входе в установку и полученную при первом расчете тепловую мощность калорифера.
  3. Расход теплоносителя. Для этого в поля онлайн-калькулятора следует ввести исходные данные: о тепловой мощности установки, полученные при первом подсчете, о температуре теплоносителя подаваемого на вход в калорифер, и значение температуры на выходе из устройства.
Расчет мощности калорифера Расчет расхода теплоносителя

Расчета калориферов, в качестве теплоносителя которых используется вода или пар, происходит по определенной методике. Здесь важной составляющей являются не только точные расчеты, но и определенная последовательность действий.

Расчет производительности для нагрева воздуха определенного объема

Определяем массовый расход нагреваемого воздуха

G (кг/ч) = L х р

где:

L — объемное количество нагреваемого воздуха, м.куб/час p — плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) — таблица показателей плотности представлена выше, кг/м.куб

Определяем расход теплоты для нагревания воздуха

Q (Вт) = G х c х (t кон — t нач)

где:

G — массовый расход воздуха, кг/час с — удельная теплоемкость воздуха, Дж/(кг•K), (показатель берется по температуре входящего воздуха из таблицы) t нач — температура воздуха на входе в теплообменник, °С t кон — температура нагретого воздуха на выходе из теплообменника, °С

к оглавлению ↑

Вычисление фронтального сечения устройства, требующегося для прохода воздушного потока

Определившись с необходимой тепловой мощностью для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха.

Фронтальное сечение — рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки нагнетаемого холодного воздуха.

f (м.кв) = G / v

где:

G — массовый расход воздуха, кг/час v — массовая скорость воздуха — для оребренных калориферов принимается в диапазоне 3 — 5 (кг/м.кв•с). Допустимые значения — до 7 — 8 кг/м.кв•с

к оглавлению ↑

Вычисление значений массовой скорости

Находим действительную массовую скорость для калориферной установки

  V(кг/м.кв•с) = G / f

где:

G — массовый расход воздуха, кг/час f — площадь действительного фронтального сечения, берущегося в расчет, м.кв

к оглавлению ↑

Расчет расхода теплоносителя в калориферной установке

Рассчитываем расход теплоносителя

Gw (кг/сек) = Q / ((cw х (t вх — t вых))

где:

Q — расход тепла для нагрева воздуха, Вт cw — удельная теплоемкость воды Дж/(кг•K) t вх — температура воды на входе в теплообменник, °С t вых — температура воды на выходе из теплообменника, °С

к оглавлению ↑

Подсчет скорости движения воды в трубах калорифера

W (м/сек) = Gw / (pw х fw)

где:

Gw — расход теплоносителя, кг/сек pw — плотность воды при средней температуре в воздухонагревателе (принимается по таблице внизу), кг/м.куб fw — средняя площадь живого сечения одного хода теплообменника (принимается по таблице подбора калориферов КСк), м.кв

к оглавлению ↑

Определение коэффициента теплопередачи

Коэффициент теплотехнической эффективности рассчитывается по формуле

Квт/(м.куб х С) = А х Vn х Wm

где:

V – действительная массовая скорость кг/м.кв х с W – скорость движения воды в трубах м/сек A

к оглавлению ↑

Расчет тепловой производительности калориферной установки

Подсчет фактической тепловой мощности:

q (Вт) = K х F х ((t вх +t вых)/2 — (t нач +t кон)/2))

или, если подсчитан температурный напор, то:

q (Вт) = K х F х средний температурный напор

где:

K — коэффициент теплоотдачи, Вт/(м.кв•°C) F — площадь поверхности нагрева выбранного калорифера (принимается по таблице подбора), м.кв t вх — температура воды на входе в теплообменник, °С t вых — температура воды на выходе из теплообменника, °С t нач — температура воздуха на входе в теплообменник, °С t кон — температура нагретого воздуха на выходе из теплообменника, °С

к оглавлению ↑

Определение запаса устройства по тепловой мощности

Определяем запас тепловой производительности:

((q — Q) / Q) х 100

где:

q — фактическая тепловая мощность подобранных калориферов, Вт Q — расчетная тепловая мощность, Вт

к оглавлению ↑

Расчет аэродинамического сопротивления

Расчет аэродинамического сопротивления. Величину потерь по воздуху можно рассчитать по формуле:

ΔРа (Па)=В х Vr

где:

v — действительная массовая скорость воздуха, кг/м.кв•с B, r — значение модуля и степеней из таблицы

Помогла вам статья произвести расчет калорифера?Помогла, мне все понятноНе помогла, нужно объяснить более подробно к оглавлению ↑

Определение гидравлического сопротивления теплоносителя

Расчет гидравлического сопротивления калорифера вычисляется по следующей формуле:

ΔPw(кПа)= С х W2

где:

С — значение коэффициента гидравлического сопротивления заданной модели теплообменника (смотреть по таблице) W — скорость движения воды в трубках воздухонагревателя, м/сек.

ventilationpro.ru

Расчет калорифера

Калориферы - приборы, применяемые для нагревания воздуха в приточных системах вентиляции, системах кондиционирования воздуха, воздушного отопления, а также в сушильных камерах.

Подбор калорифера осуществляется на холодный период.

  1. Определяем расход тепла на нагревание приточного воздуха (Богословский, стр. 202, ф-ла XII.1):

где - массовое количество нагреваемого воздуха, кг/ч;

- начальная и конечная температура воздуха, т.е. до калорифера и после него соответственно;

- удельная теплоемкость воздуха ().

  1. Задаваясь массовой скорость 4,6 кг/с·м2 находим необходимую площадь живого сечения калориферной установки (Богословский, стр. 203, ф-ла XII.4):

Калорифер с данной площадью живого сечения существует, следовательно, необходимо установить только 1 калорифер.

  1. Определяемся с установкой калориферов. Теплоноситель принимаем – воду. Она должна пройти через площадь сечения трубок каждого калорифера (принимаем по табл. 2.23 спр. Староверова, стр. 424):

- температура горячей воды

- температуры оборотной воды

  1. Определяем скорость движения теплоносителя в трубках калорифера (Богословский, стр. 203, ф-ла XII.8):

где - плотность воды

- теплоемкость воды

- площадь живого сечения по теплоносителю

  1. Находим коэффициент теплопередачи (Староверов, стр. 423, табл. II.22):

по таблице:

по формуле:

  1. Площадь поверхности нагрева:

  1. Находим необходимую площадь поверхности нагрева калорифера:

где - средняя температура теплоносителя

- средняя температура нагрева воздуха, проходящего через калорифер

  1. Определяем запас площади нагрева калорифера:

  1. Определяем сопротивление калорифера проходу воздуха:

где - число последовательно расположенных калориферов;

- сопротивление одного калорифера.

  1. Проверяем значение сопротивления калорифера проходу воздуха:

Так как в цехе имеются пылевыделения, то приток воздуха необходимо делать в верхнюю зону помещения. В помещениях большой высоты возможна подача притока свободными струями.

Для дальнейших расчетов выберем приколонные четырехструйные воздухораспределители серии НРВ.

Для того, чтобы начать расчет, необходимо определить возможное количество воздухораспределителей

где – объем приточного воздуха на холодный период года, 24361 кг/ч;

- производительность одного воздухораспределителя, принимаемая (Староверов, стр. 195, табл. 8.9.)

24361/5 = 4872,2 м3/ч – расход воздуха на участке.

Выбираем 5 воздухораспределителей с номинальной пропускной способностью 5000 м3/ч. Площадь выпускного патрубка м2.

Расчет по Староверову:

Воздухораспределители следует рассчитывать по схеме 3, пользуясь нижеприведенными формулами (Староверов, табл. 8.1, стр. 178). Принять в этих формулах Кв = 1, , ξ =3 (Староверов, стр. 195)

Расчет проводим по методичке:

  1. Место входа оси плоской струи в рабочую зону примем в плоскости оси прохода. Оно представляет собой прямую, расположенную на плоскости, ограничивающей сверху рабочую зону и отстоящую на расстоянии 2 м от пола.

  2. Ось воздухоприточной струи помещаем на высоте 8 метров или 0,6 от высоты помещения. Это условие обеспечивает свободное развитие струи и не налипание ее на потолок или пол.

  3. Исходя из расположения оси струи и места расположения линии пересечения оси плоской струи с верхней границей рабочей зоны, принимаем координату x=2,5 м, а координату y=1,0 м.

Расчетная длина оси струи:

Для щели коэффициенты затухания: m=4,5 n=3,2 (Староверов, стр. 180, табл. 8.1.)

  1. Задаемся температурой притока, с учетом подогрева в вентиляторе – 11. Избыточная температура составит 20-11=9.

  2. Параметры воздуха на входе струи в рабочую зону определяем в соответствии с обязательным приложением 6:

  • Максимальная скорость на оси струи 1,8*0,2 = 0,36 м/с

  • Избыточная температура

  1. Задаемся шириной щели 0,05 м, тогда скорость приточного воздуха на выходе из щели, обеспечивающая вход струи в точку с указанными координатами, равна:

  1. Длина щели принимается равной 0,8*47,2 = 37,76. Тогда ширина щели, рассчитанная по величине притока:

Ширина щели = 0,2 м.

  1. Определяем скорость на входе струи в рабочую зону. В нашем случае , так как 8,5

    studfiles.net


    Смотрите также