Коллективные средства защиты вентиляция освещение защита от шума и вибрации


3 Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации

Тема 3.3. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации

3.3.1. Воздушная среда важнейшая часть окружающей работника производственной среды.

3.3.2. Промышленная вентиляция.

3.3.3. Защита от шума.

3.3.4. Вибрация и защита от нее.

3.3.5. Освещение.

3.3.6. Лазерное излучение.

3.3.7. Неионизирующие излучения.

3.3.8. Ионизирующие излучения и защита от них.

3.3.1. Воздушная среда – важнейшая часть окружающей работника производственной среды.

Воздушная среда из всех элементов, составляющих среду обитания и деятельности человека, является важнейшей. Из всех сред, окружающих человека, она одна служит действительно “окружающей средой”, ибо непосредственно окружает человеческий организм (за исключением случаев неестественного для человека нахождения под водой). Но не только этим воздушная среда выделяется из остальных сред. Человеческий организм нуждается в кислороде воздуха постоянно и на протяжении всей своей жизни, которая просто невозможна без дыхания.Природный воздух представляет собой сложную динамическую систему, образованную различными газами (и парами) и находящимися во взвешенном состоянии мельчайшими твердыми и жидкими частицами – аэрозолями (пыль, дым, туман, вирусы, бактерии, споры, пыльца).“Чистый воздух”, т.е. смесь основных газов, лишенная аэрозольных и газообразных “загрязнений”, является научной абстракцией, идеализацией, не встречающейся в природе, но необходимой для понимания всех других реальных состояний воздушной среды.Под загрязнением воздуха понимается прямое или косвенное введение в него любого вещества в таком количестве, которое изменяет качество и состав чистого атмосферного воздуха, нанося вред людям, живой и неживой природе.Газообразные загрязнения воздуха производственной среды связаны с испарением летучих жидкостей, утечками газа из резервуаров, образование газов при горении, обработке материалов и т.п.Важнейшим газообразным веществом, определяющим качество воздуха, является водяной пар. Чем сильнее нагрет воздух, тем большее количество водяного пара он может содержать. Отношение содержащегося водяного пара к тому предельному количеству, которое может содержаться в воздухе при данной температуре, называется относительной влажностью. Она характеризует “заполненность” воздуха водяным паром и тем самым характеризует способность воды испаряться. Охлаждение влажного воздуха вызывает конденсацию паров – образуется туман и капельки (конденсат) на всех холодных поверхностях.Важнейшей характеристикой воздушной среды является барометрическое давление, ибо разница барометрического давления и давления воздуха в альвеолах легких определяет величину газообмена. Барометрическое давление считается и называется нормальным на уровне моря (одна атмосфера) и экспоненциально убывает с высотой.Помимо газового состава и барометрического давления, важнейшей характеристикой воздушной среды служит температура воздуха. В сочетании с подвижностью (скоростью) движения воздуха относительно тела человека температура воздуха определяет характер теплообмена – нагрев или охлаждение тела человека. Заметим, что, строго говоря, нагрев или охлаждение тела определяются еще соотношением температуры поверхности тела и температуры окружающих тел, составляющих лучистый нагрев. Охлаждение тела зависит также от потоотделения, в свою очередь зависящего от относительной влажности воздуха.Температура, подвижность и относительная влажность воздуха, а также лучистый теплообмен определяют тепловой комфорт/дискомфорт человека, находящегося в воздушной среде.Состояние воздушной среды, характеризующееся температурой, подвижностью и относительной влажностью воздуха, определенным лучистым теплообменом и барометрическим давлением называется микроклиматом (иногда производственным микроклиматом).Поддержание микроклимата рабочего места в пределах гигиенических норм – важнейшая задача охраны труда.Подчеркнем, что процесс формирования качества воздушной среды в помещениях принципиально отличается от такого же процесса в открытой атмосфере отсутствием ультрафиолетового излучения, частичным или полным экранированием от геомагнитных полей (особенно в зданиях из железобетонных конструкций), измененностью электрических свойств воздуха, практическим отсутствием высших растений, относительной малостью соотношения объема воздушной среды и площади поверхностей, через которые происходит процесс загрязнения.Все это существенно сказывается на качестве воздушной среды помещений, ведет к тому, что, как правило, воздух в помещениях, особенно производственных, оказывается в десятки, а то и в сотни раз хуже, чем “на улице”. Кроме того, наличие вышеперечисленных факторов затрудняет поддержание характеристик воздушной среды в приемлемых для человеческого организма значениях, требует применения специальных очистительных устройств и/или средств индивидуальной защиты.

3.3.2. Промышленная вентиляция.

Напомним, что вентиляция – это обмен воздуха в помещении для удаления избытков теплоты, влаги, вредных и других загрязняющих воздух веществ с целью обеспечения допустимых микроклиматических условий и чистоты воздуха.В условиях производства вентиляция различается:
  • - по способу перемещения воздуха – естественная и механическая;
  • - по форме организации воздухообмена – местная и общеобменная.
Типы вентиляционных установок бывают:
  • - вытяжные (предназначенные для удаления воздуха) – местные и общие;
  • - приточные (осуществляют подачу воздуха) – местные (воздушные души, завесы, оазисы) и общие (рассеянный или сосредоточенный приток).
При естественной вентиляции воздухообмен происходит за счет разности температур, а, следовательно, и удельной массы воздуха внутри производственного помещения и вне его, т.е. под влиянием теплового напора, а также за счет воздействия ветра (ветровой напор). Действие этих факторов тем больше, чем больше разница температур в верхней и нижней зонах помещения и чем больше высота помещения.Естественная вентиляция производственных помещений может быть неорганизованной и организованной.При неорганизованной вентиляции (проветривании) поступление и удаление воздуха происходит через окна, форточки, специальные проемы, а также через неплотности наружных ограждений (инфильтрация).Организованная (регулируемая) естественная вентиляция производственных помещений называется аэрацией.В отличие от естественной, механическая вентиляция позволяет производить предварительную обработку приточного воздуха – увлажнение, нагрев или охлаждение и очистку от пыли, газов и других примесей.Общеобменная вентиляция применяется в тех случаях, когда вредные вещества, избыточное (преимущественно конвекционное) тепло и влага выделяются рассредоточено по всему рабочему помещению и удалить их с помощью местных отсосов технически не представляется возможным, а также в тех случаях, когда необходимо разбавить до ПДК остатки воздуха, не удаляемого местными отсосами.Приточный воздух необходимо подвергать обработке: подогреву или охлаждению, очистке от пыли, а в некоторых случаях – увлажнению.Рециркуляция воздуха в системах приточно-вытяжной вентиляции применяется в холодное и переходное время года в целях экономии тепла, затрачиваемого на подогрев воздуха. При рециркуляции часть воздуха, удаляемого из помещения после соответствующей очистки от вредных веществ, снова направляется в помещение.Кондиционирование воздуха – создание и автоматическое регулирование в помещениях заданных параметров микроклимата и санитарно-гигиенических параметров (температуры, влажности, подвижности воздуха). Системами кондиционирования должен подаваться воздух, очищенный от пыли. Иногда предъявляются требования по очистке воздуха от бактерий, по его ионизации, дезодорации или ароматизации.Объем воздуха, удаляемый из помещения вытяжными вентиляционными установками, должен компенсироваться организованным притоком чистого воздуха. Неорганизованный приток наружного воздуха для возмещения вытяжки в холодный период года допускается 1 раз в час, если при этом не будет переохлаждения воздуха и образования тумана.Особое значение имеет эффективно работающая система вентиляции на производствах с использованием взрывоопасных веществ. “Правила устройства, изготовления, монтажа, ремонта и безопасной эксплуатации взрывозащищенных вентиляторов” утверждены постановлением Госгортехнадзора России от 10 июня 2003 г. № 84 (ПБ 03-590-03).

3.3.3. Защита от шума.

С физической точки зрения шум представляет собой смешение звуков различных частот и интенсивности, распространяющихся через твердые, жидкие и газообразные среды.С физиологической точки зрения шумом является всякий мешающий человеку звук и / или сочетание звуков.Слышимый диапазон звуков (шумов) от 20 до 20000 Гц. Ниже 20Гц– область инфразвуков, выше 20000 Гц– область ультразвуков.Ухо человека может воспринимать и анализировать звуки в широком диапазоне частот и интенсивностей. Границы частотного восприятия существенно зависят от возраста человека и состояния органа слуха. У лиц среднего и пожилого возраста верхняя граница слышимой области понижается до 12–10 кГц.Область слышимых звуков ограничена двумя кривыми: нижняя кривая определяет порог слышимости, т.е. силу едва слышимых звуков различной частоты, верхняя – порог болевого ощущения, т.е. такую силу звука, при которой нормальное слуховое ощущение переходит в болезненное раздражение органа слуха.Субъективно воспринимаемую интенсивность звука называют его громкостью (физиологической силой звука). Громкость является функцией интенсивности звука, частоты и времени действия физиологических особенностей слухового анализатора. С ростом силы звука ухо реагирует приблизительно одинаково на звуки разных частот звукового диапазона.В качестве характеристик постоянного шума на рабочих местах, а также для определения эффективности мероприятий по ограничению его неблагоприятного влияния принимаются уровни звуковых давлений (в дБ) в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 1000; 2000; 4000 и 8000 Гц.При гигиенической оценке шумы классифицируют по характеру спектра и по временным характеристикам.По характеру спектра шумы подразделяются на:
  • - широкополосные, с непрерывным спектром шириной более одной октавы;
  • - тональные, в спектре которых имеются выраженные дискретные тона.
Тональный характер шума для практических целей (при контроле его параметров на рабочих местах) устанавливается измерением в третьоктавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.По временным характеристикам шумы подразделяются на:
  • - постоянные, уровень звука которых за 8-часовой рабочий день (рабочую смену) изменяется во времени не более чем на 5 дБА при измерениях по шкале А шумомера;
  • - непостоянные, уровень звука которых за 8-часовой рабочий день (рабочую смену) изменяется во времени более чем на 5 дБА при измерениях по шкале А шумомера.
Непостоянные шумы подразделяются, в свою очередь, на:
  • - колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;
  • - прерывистые, уровень звука которых ступенчато изменяется на 5 дБА и более, причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;
  • - импульсные, состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с. При этом уровни звука в дБА, измеренные соответственно на временных характеристиках “импульс” и “медленно” шумомера, отличаются не менее чем на 7 дБА.
Шум, являясь информационной помехой для высшей нервной деятельности в целом, оказывает неблагоприятное влияние на протекание нервных процессов, увеличивает напряжение физиологических функций в процессе труда, способствует развитию утомления и снижает работоспособность организма.Среди многочисленных проявлений неблагоприятного воздействия шума на организм можно выделить снижение разборчивости речи, неприятные ощущения, развитие утомления, снижение производительности труда и, наконец, появление шумовой патологии.Среди многообразных проявлений шумовой патологии ведущим клиническим признаком является медленно прогрессирующее снижение слуха.Однако кроме специфического действия на органы слуха, шум оказывает и неблагоприятное общебиологическое действие, вызывая сдвиги в функциональных системах организма. Так, под влиянием шума возникают вегетативные реакции, обусловливающие нарушение периферического кровообращения за счет сужения капилляров, а также изменение артериального давления (преимущественно повышение). Шум вызывает снижение иммунологической реактивности и общей сопротивляемости организма, что проявляется в повышении уровня заболеваемости с временной утратой трудоспособности (в1,2–1,3 раза при увеличении уровня производственного шума на 10 дБ).Для снижения шума в производственных помещениях применяют различные методы коллективной защиты: уменьшение уровня шума в источнике его возникновения; рациональное размещение оборудования; борьбу с шумом на путях его распространения, в том числе изменение направленности излучения шума, использование средств звукоизоляции, звукопоглощения и установку глушителей шума, акустическую обработку поверхностей помещения.На рабочих местах промышленных предприятий защита от шума должна обеспечиваться строительно-акустическими методами:
  • - рациональным, с акустической точки зрения, решением генерального плана объекта, рациональным архитектурно-планировочным решением зданий;
  • - применением ограждающих конструкций зданий с требуемой звукоизоляцией;
  • - применением звукопоглощающих конструкций (звукопоглощающих облицовок, кулис, штучных поглотителей);
  • - применением звукоизолирующих кабин наблюдения и дистанционного управления;
  • - применением звукоизолирующих кожухов на шумных агрегатах;
  • - применением акустических экранов;
  • - применением глушителей шума в системах вентиляции, кондиционирования воздуха и в аэрогазодинамических установках;
  • - виброизоляцией технологического оборудования.
Акустическое благоустройство, создание оптимальных акустических условий в аудиториях, зрительных залах театров, кинотеатров, дворцов культуры, спортивных залах, залах ожидания и операционных залах железнодорожных, аэро- и автовокзалов должно обеспечиваться:
  • - рациональным объемно-планировочным решением зала (соотношение объемно-линейных размеров);
  • - применением звукопоглощающих материалов и конструкций;
  • - применением звукоотражающих и звукорассеивающих конструкций;
  • - применением ограждающих конструкций, обеспечивающих требуемую звукоизоляцию от внутренних и внешних источников шума;
  • - применением глушителей шума в системах принудительной вентиляции и кондиционирования воздуха;
  • - применением систем звукоусиления, оповещения и передачи информации.
Для защиты от шума также широко применяются различные средства индивидуальной защиты: противошумные наушники, закрывающие ушную раковину снаружи; противошумные вкладыши, перекрывающие наружный слуховой проход или прилегающие к нему; противошумные шлемы и каски; противошумные костюмы (ГОСТ 12.1.029-80. ССБТ “Средства и методы защиты от шума. Классификация”).При разработке нового и модернизации действующего оборудования, приборов и инструмента обязательно предусматриваются меры по ограничению неблагоприятного воздействия ультразвука на работников:
  • - снижение интенсивности ультразвука в источнике образования за счет рационального подбора мощности оборудования с учетом технологических требований;
  • - при проектировании ультразвуковых установок не рекомендуется выбирать рабочую частоту ниже 22 кГц, чтобы уменьшить действие высокочастотного шума;
  • - оснащение ультразвуковых установок звукоизолирующими кожухами или экранами, при этом в кожухе не должно быть отверстий и щелей. Повышение эффективности звукопоглощающего кожуха может быть достигнуто размещением внутри кожуха звукопоглощающего материала или резонаторных поглотителей;
  • - размещение ультразвукового оборудования в звукоизолированных помещениях или кабинах с дистанционным управлением;
  • - оборудование ультразвуковых установок системами блокировки, отключающей преобразователи при открывании кожухов;
  • - создание автоматического ультразвукового оборудования для мойки тары, очистки деталей и т.д.;
  • - изготовление приспособлений для удержания источника ультразвука или обрабатываемой детали;
  • - применение специального рабочего инструмента с виброизолирующей рукояткой.
Снижение интенсивности инфразвука, генерируемого технологическими процессами и оборудованием, следует достигать за счет применения комплекса мероприятий, включающих:
  • - ослабление мощности инфразвука в источнике его образования на стадии проектирования, конструирования, проработки архитектурно-планировочных решений, компоновки помещений и расстановки оборудования;
  • - изоляцию источников инфразвука в отдельных помещениях;
  • - использование кабин наблюдения с дистанционным управлением технологическим процессом;
  • - уменьшение интенсивности инфразвука в источнике путем введения в технологические цепочки специальных демпфирующих устройств малых линейных размеров, перераспределяющих спектральный состав инфразвуковых колебаний в область более высоких частот;
  • - укрытие оборудования кожухами, имеющими повышенную звукоизоляцию в области инфразвуковых частот;
  • - отделку поверхностей производственных помещений конструкциями, имеющими высокий коэффициент звукопоглощения в области инфразвуковых частот;
  • - снижение вибрации оборудования, если инфразвук имеет вибрационное происхождение;
  • - установку специальных, снижающих инфразвук глушителей на воздухозаборные шахты, выбросные отверстия компрессоров и вентиляторов;
  • - увеличение звукоизоляции ограждающих конструкций помещений в области инфразвуковых частот путем повышения их жесткости с помощью применения неплоских элементов;
  • - заделку отверстий и щелей в ограждающих конструкциях производственных помещений;
  • - использование глушителей инфразвука интерференционного типа.

Тема 3.3. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации

⇐ ПредыдущаяСтр 3 из 4Следующая ⇒

Понятие о микроклимате. Физиологические изменения и патологические состояния: перегревание, тепловой удар, солнечный удар, профессиональная катаракта, охлаждение, переохлаждение. Влияние производственных метеорологических условий и атмосферного давления на состояние человека, производительность труда, уровень травматизма. Нормирование производственного микроклимата. Средства нормализации климатических параметров. Профилактические мероприятия при работах в условиях пониженного и повышенного давления.

Действие токсических газообразных веществ и производственной пыли на организм человека. Источники загрязнения воздуха производственных помещений. Способы и средства борьбы с загазованностью и запыленностью воздуха рабочей зоны.

Вентиляция производственных помещений. Назначение и виды вентиляции. Требования к вентиляции. Определение требуемого воздухообмена. Элементы механической вентиляции (устройства для отсоса и раздачи воздуха, фильтры, вентиляторы, воздуховоды и т.д.). Контроль эффективности вентиляции.

Роль света в жизни человека. Основные светотехнические понятия и величины. Гигиенические требования к освещению. Цвет и функциональная окраска. Виды производственного освещения. Источники света. Нормирование и контроль освещения. Ультрафиолетовое облучение, его значение и организация на производстве. Средства защиты органов зрения.

Лазерное излучение и его физико-гигиенические характеристики. Воздействие его на организм человека. Средства и методы защиты от лазерных излучений. Измерение характеристик (параметров) лазерного излучения.

Электромагнитные поля и их физико-гигиенические характеристики. Влияние их на организм человека. Нормирование электромагнитных полей. Средства и методы защиты от электромагнитных полей. Измерение характеристик электромагнитных полей.

Ионизирующие излучения и их физико-гигиенические характеристики. Нормирование ионизирующих излучений. Средства и методы защиты от ионизирующих излучений. Дозиметрический контроль.

Вибрация и ее физико-гигиеническая характеристика (параметры и воздействие на организм человека). Гигиеническое и техническое нормирование вибрации. Средства и методы защиты от вибрации: вибродемпфирование, динамическое виброгашение, активная и пассивная виброизоляция.

Шум и его физико-гигиеническая характеристика. Нормирование шума. Защита от шума в источнике. Акустические средства защиты: звукоизоляция, звукопоглощение, демпфирование, виброизоляция и глушители шума (активные, резонансные и комбинированные). Расчет звукоизоляции и звукопоглощения. Архитектурно-планировочные и организационно-технические методы защиты от шума.

Ультразвук и его физико-гигиеническая характеристика. Профилактические мероприятия при воздействии ультразвука на человека. Источники инфразвука в промышленности и его воздействие на организм человека. Нормирование инфразвука. Мероприятия по ограничению неблагоприятного воздействия инфразвука.

Тема 3.4. Опасные производственные объекты и обеспечение промышленной безопасности

Понятие об опасных производственных объектах. Российское законодательство в области промышленной безопасности. Основные понятия и термины безопасности. Авария и инцидент.

Общие мероприятия промышленной безопасности: идентификация опасных производственных объектов; анализ рисков; декларирование опасностей; сертификация оборудования; лицензирование деятельности; аттестация персонала. Производственный контроль.

Основные мероприятия по обеспечению безопасности сосудов под давлением.

Системы, находящиеся под давлением. Основные опасные факторы. Причины аварий систем, находящихся под давлением. Системы, подлежащие регистрации и особому контролю Ростехнадзора. Безопасная эксплуатация емкостей со сжатыми, сжиженными и растворенными газами. Классификация емкостей (баллоны, газгольдеры, ресиверы, котлы и др.) по назначению, давлению и объему. Безопасная арматура для емкостей и контрольно-измерительные приборы (КИП). Проверка и окраска емкостей. Безопасная эксплуатация компрессорных установок. Безопасная арматура и КИП для компрессорных установок. Правила приемки и испытания. Котельные установки, используемые на предприятии для целей отопления и в технологических процессах. Безопасная эксплуатация их. Безопасность работы с вакуумными установками.

Основные мероприятия по обеспечению безопасности подъемных механизмов.

Классификация грузов по массе и опасности. Перемещение грузов вручную. Машины и механизмы, применяемые для транспортировки грузов и безопасная эксплуатация их. Организация безопасной эксплуатации подъемно-транспортного оборудования. Техническое освидетельствование грузоподъемных машин. Приборы и устройства безопасности подъемно-транспортных машин.

Основные мероприятия по обеспечению безопасности газового хозяйства.

Основные мероприятия по обеспечению безопасности холодильной техники.

Тема 3.5. Организация безопасного производства работ с повышенной опасностью

Перечень работ с повышенной опасностью.

Порядок оформления допуска к работам с повышенной опасностью.

Требования безопасности для работ с повышенной опасностью.

Тема 3.6. Обеспечение электробезопасности

Основные причины и виды электротравматизма.

Специфика поражающего действия электрического тока. Пороговые ощутимый, неотпускающий и фибрилляционный токи. Напряжение прикосновения. Факторы поражающего действия электрического тока.

Классификация помещений по степени поражения человека электрическим током. Средства защиты от поражения электротоком.

Организационные мероприятия по безопасному выполнению работ в электроустановках.

Тема 3.7. Обеспечение пожарной безопасности

Основные понятия о горении и распространении пламени. Опасные (поражающие) факторы пожара и взрыва.

Основные принципы пожарной безопасности: предотвращение образования горючей смеси; предотвращение внесения в горючую среду источника зажигания; готовность к тушению пожара и ликвидации последствий загорания.

Задачи пожарной профилактики. Системы пожарной защиты.

Категорирование помещений по взрывопожарной и пожарной опасности.

Средства оповещения и тушения пожаров. Эвакуация людей при пожаре.

Обязанность и ответственность администрации предприятия в области пожарной безопасности.

Тема 3.8. Обеспечение безопасности работников в аварийных ситуациях

Основные мероприятия по предупреждению аварийных ситуаций и обеспечению готовности к ним. Определение возможного характера и масштаба аварийных ситуаций и связанных с ними рисков в сфере охраны труда. Планирование и координация мероприятий в соответствии с размером и характером деятельности организации, обеспечивающих защиту всех людей в случае аварийной ситуации в рабочей зоне. Организация взаимодействия с территориальными структурами и службами аварийного реагирования. Организация оказания первой и медицинской помощи. Проведение регулярных тренировок по предупреждению аварийных ситуаций, обеспечению готовности к ним и реагированию.

Раздел 4. Социальная защита пострадавших на производстве

Тема 4.1. Общие правовые принципы возмещения причиненного вреда

Понятие вреда, возмещения вреда и причинителя вреда в гражданском праве. Третьи лица. Ответственность юридического лица или гражданина за вред, причиненный его работникам. Ответственность за вред, причиненный деятельностью, создающей повышенную опасность для окружающих. Право регресса к лицу, причинившему вред. Объем и характер возмещения вреда, причиненного повреждением здоровья. Материальный и моральный вред. Условия возмещения вреда в гражданском праве. Способ и размер компенсации морального вреда.

⇐ Предыдущая1234Следующая ⇒

Читайте также:

ТЕМА 3.3. Средства коллективной защиты от основных факторов производственной среды

Страница 1 из 8

ТЕМА 3.3. Средства коллективной защиты от основных факторов производственной среды

3.3.1. Воздушная среда – важнейшая часть окружающей работника производственной среды3.3.2. Промышленная вентиляция3.3.3. Защита от шума3.3.4. Вибрация и защита от нее3.3.5. Освещение3.3.6. Лазерное излучение3.3.7. Неионизирующие излучения

3.3.8. Ионизирующие излучения и защита от них

3.3.1. Воздушная среда – важнейшая часть окружающей работника производственной среды

Воздушная среда из всех элементов, составляющих среду обитания и деятельности человека, является важнейшей. Из всех сред, окружающих человека, она одна служит действительно “окружающей средой”, ибо непосредственно окружает человеческий организм (за исключением случаев неестественного для человека нахождения под водой). Но не только этим воздушная среда выделяется из остальных сред. Человеческий организм нуждается в кислороде воздуха постоянно и на протяжении всей своей жизни, которая просто невозможна без дыхания. Природный воздух представляет собой сложную динамическую систему, образованную различными газами (и парами) и находящимися во взвешенном состоянии мельчайшими твердыми и жидкими частицами – аэрозолями (пыль, дым, туман, вирусы, бактерии, споры, пыльца). “Чистый воздух”, т.е. смесь основных газов, лишенная аэрозольных и газообразных “загрязнений”, является научной абстракцией, идеализацией, не встречающейся в природе, но необходимой для понимания всех других реальных состояний воздушной среды. Под загрязнением воздуха понимается прямое или косвенное введение в него любого вещества в таком количестве, которое изменяет качество и состав чистого атмосферного воздуха, нанося вред людям, живой и неживой природе. Газообразные загрязнения воздуха производственной среды связаны с испарением летучих жидкостей, утечками газа из резервуаров, образование газов при горении, обработке материалов и т.п. Важнейшим газообразным веществом, определяющим качество воздуха, является водяной пар. Чем сильнее нагрет воздух, тем большее количество водяного пара он может содержать. Отношение содержащегося водяного пара к тому предельному количеству, которое может содержаться в воздухе при данной температуре, называется относительной влажностью. Она характеризует “заполненность” воздуха водяным паром и тем самым характеризует способность воды испаряться. Охлаждение влажного воздуха вызывает конденсацию паров – образуется туман и капельки (конденсат) на всех холодных поверхностях. Важнейшей характеристикой воздушной среды является барометрическое давление, ибо разница барометрического давления и давления воздуха в альвеолах легких определяет величину газообмена. Барометрическое давление считается и называется нормальным на уровне моря (одна атмосфера) и экспоненциально убывает с высотой. Помимо газового состава и барометрического давления, важнейшей характеристикой воздушной среды служит температура воздуха. В сочетании с подвижностью (скоростью) движения воздуха относительно тела человека температура воздуха определяет характер теплообмена – нагрев или охлаждение тела человека. Заметим, что, строго говоря, нагрев или охлаждение тела определяются еще соотношением температуры поверхности тела и температуры окружающих тел, составляющих лучистый нагрев. Охлаждение тела зависит также от потоотделения, в свою очередь зависящего от относительной влажности воздуха. Температура, подвижность и относительная влажность воздуха, а также лучистый теплообмен определяют тепловой комфорт/дискомфорт человека, находящегося в воздушной среде. Состояние воздушной среды, характеризующееся температурой, подвижностью и относительной влажностью воздуха, определенным лучистым теплообменом и барометрическим давлением называется микроклиматом (иногда производственным микроклиматом). Поддержание микроклимата рабочего места в пределах гигиенических норм – важнейшая задача охраны труда. Подчеркнем, что процесс формирования качества воздушной среды в помещениях принципиально отличается от такого же процесса в открытой атмосфере отсутствием ультрафиолетового излучения, частичным или полным экранированием от геомагнитных полей (особенно в зданиях из железобетонных конструкций), измененностью электрических свойств воздуха, практическим отсутствием высших растений, относительной малостью соотношения объема воздушной среды и площади поверхностей, через которые происходит процесс загрязнения.

Все это существенно сказывается на качестве воздушной среды помещений, ведет к тому, что, как правило, воздух в помещениях, особенно производственных, оказывается в десятки, а то и в сотни раз хуже, чем “на улице”. Кроме того, наличие вышеперечисленных факторов затрудняет поддержание характеристик воздушной среды в приемлемых для человеческого организма значениях, требует применения специальных очистительных устройств и/или средств индивидуальной защиты.

Последняя >>

Основные виды коллективной защиты. Основные методы защиты от опасных и вредных производственных факторов.

К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации.

Требования к вентиляции. Элементы механической вентиляции (устройство отсоса и раздачи воздуха, фильтры, вентиляторы.

Вентиляция – это обмен воздуха в помещении для удаления избытков теплоты, влаги, вредных и других загрязняющих веществ с целью обеспечения допустимых микроклиматических условий и чистоты воздуха.

Вентиляция подразделяется:

по способу перемещения воздуха – естественная и механическая;

по форме организации воздухообмена – местная и общеобменная;

по типу:

вытяжные (для удаления воздуха) – местные и общие;

приточные (осуществляют подачу воздуха) – местные (воздушные души, завесы, оазисы) и общие (рассеянный или сосредоточенный приток).

Естественная вентиляция. Воздухообмен происходит за счет разности температур, а следовательно, и удельный вес воздуха внутри производственного помещения и вне его под влиянием теплового напора, а также за счет воздействия ветра (ветровой напор). Действие этих факторов тем больше, чем больше разница температур в верхней и нижней зоне помещения и чем больше высота помещения.

При неорганизованной естественной вентиляции (проветривание) поступление и удаление воздуха происходит через окна, форточки, специальные проемы, неплотности наружных ограждений (инфильтрация).

Организованная (регулируемая) естественная вентиляция или аэрация осуществляется за счет конструктивных элементов здания – аэрационных фонарей. Она может быть улучшена за счет каналов, шахт, функционирующих под действием теплового напора. Для эффективности ветрового напора шахты снабжаются специальными насадками – дефлекторами.

Механическая вентиляция – позволяет производить предварительную обработку приточного воздуха – увлажнение, нагрев, или охлаждение, очистку от пыли, газов и других примесей.

К установкам местной механической вентиляции относятся местные отсосы открытого типа, включающие защитные обеспыливающие кожухи, вытяжные шкафы, бортовые, шарнирно-телескопические (встроенные в рабочие места, инструменты) перемещаемые отсосы, а также вытяжные зонты, укрытия-боксы, камеры и кабины.

Общеобменная вентиляция применяется в тех случаях, когда вредные вещества избыточное тепло или влага выделяются по всему рабочему помещению и удалить их с помощью местных отсосов технически не представляется возможным. Принцип действия основан на разбавлении загрязненного, перегретого или переувлажненного воздуха  до уровней не превышающих ПДК.

Приточный воздух, как правило, подвергается обработке: подогреву, охлаждению, очистке от пыли иногда увлажнению. При рециркуляции часть воздуха, удаляемого из помещения после очистки от вредных веществ, снова возвращается в помещение.

Кондиционирование воздуха – создание и автоматическое регулирование в помещении заданных параметров микроклимата (санитарно-гигиенических) по температуре, влажности, подвижности воздуха. Иногда необходимо обеспечить ионизацию, дезадорацию, ароматизацию, очистку от бактерий.

Баланс приточного и удаляемого воздуха должен отвечать назначению и конкретным условиям применения. Как правило, приток воздуха и удаляемое его количество должны соответствовать или разница должна быть минимальной. В помещениях цехов изготовления электровакуумных приборов (чистые помещения), необходимо создавать положительных воздушный баланс – т.е. выдавливать избыточный воздух из помещения.

Элементы механической вентиляции (устройства для отсоса и раздачи воздуха, фильтры, вентиляторы, воздуховоды и т.д.).

Основные требования к вентиляции:  Баланс притока воздуха. Системы должны быть правильно размещены. Обеспечивать необходимую частоту обмена воздуха. Система состоит из вентилятора, воздуховодов, фильтров для очистки воздуха, воздухозаборных камер, пылеосадочных камер, Установки кондиционирования включает в себя комплекс технических средств включающих в себя фильтрацию, подогрев, охлаждение, осушку, увлажнение воздуха). Воздушные завесы. Водяные завесы. Аспирация.

Кроме вентиляции способами защиты от вредных производственных факторов в воздухе рабочей зоны при запыленности, загазованности являются герметизация процессов, установка водяных  и воздушных завес, автоматизация и роботизация процессов, замена токсичных веществ менее токсичными, защита расстоянием, временем, использование СИЗ органов дыхания.

Шум и его физико-гигиеническая характеристика.

Шум (звук), инфразвук и ультразвук по своей физической сущности являются акустическими колебаниями. Акустические колебания, лежащие в зоне 16 Гц -  20 кГц, воспринимаются человеком с нормальным слухом, как звук, и называется звуковым. Акустические колебания с частотой менее 16 Гц не воспринимаются ухо человека и называются инфразвуком, выше 20 кГц  - ультразвуком.

С гигиенической точки зрения: шум – это нежелательный для человека звук. Шум может вызвать у человека неприятные и даже болевые ощущения. Характеристики звука меняются в очень широких пределах, а поэтому в гигиенической практике принято использовать относительные логарифмические – используют десятую долю специальной единицы – бела – децибел. Две интенсивности силы звука, отличающегося в 10 раз, разнятся на 10 децибел. За уловный ноль логарифмической шкалы принимаются параметры звуковой волны частотой 1000 Гц, вызывающей минимальные слуховые ощущения.

Определяемые относительно их уровни интенсивности звукового давления и мощности звука составили шкалу, удобную для измерения шумов, различающиеся в десятки тысяч раз звуковые давления (например, шум двигателя и шепот) имеют разницу уровней 60 – 80 дБ.

Границы частотного восприятия зависят от возраста человека и состояния органа слуха. У пожилого человека верхняя граница слышимости с возрастом понижается до 12 – 10 кГц.

Область слышимых звуков ограничивается двумя кривыми: нижняя – определяет порог слышимости, т.е. силу едва слышимых звуков различной частоты, верхняя - порог болевого ощущения, т.е. такую силу звука, при которой нормальное звуковое ощущение переходит в болезненное раздражение органа слуха.

Болевым порогом принято считать звук интенсивностью 140 дБ.  Субъективно воспринимаемую интенсивность звука называют его громкостью (физической силой звука).

При гигиенической оценке шумы классифицируются по характеру спектра и по временным характеристикам.

По характеру спектра шумы подразделяются на:

широкополосные, с непрерывным спектром шириной более одной октавы;

тональные, в спектре которых имеются выраженные дискретные тона.

По временным характеристикам на:

постоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не более чем на 5 дБА при изменении по шкале А шумомера;

непостоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени более чем на 5 дБА при изменении по шкале А шумомера.

Непостоянные шумы подразделяются на:

колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;

прерывистые, уровень звука которых ступенчато изменяется на 5 дБА и более, причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 сек и более;

импульсные, состоящие из одного или нескольких звуковых сигналов, длительностью менее 1 сек. При этом уровни звука в дБА, измеренные соответственно на временных характеристиках «импульс» и «медленно» шумомера, отличается не менее чем на 7 дБА.

Характеристикой непостоянного шума на рабочих местах является интегральный параметр – эквивалентный уровень звука в дБА.  Для импульсного шума максимальный уровень звука не должен превышать 125 дБА.

Шум является информационной помехой, неблагоприятно влияет на протекание вредных процессов, способствует утомляемости, снижает работоспособность. При долговременном воздействии формируется устойчивое повышение слуховых порогов. Среди неблагоприятный воздействий шума на организм человека можно выделить снижение разборчивости речи, развитие утомляемости, снижение производительности труда, проявление шумовой патологии, профзаболеваемости (тугоухости). Шум способен влиять и на изменение артериального давления, на поражение кровеносной системы.

Для снижения уровня шума в производственных помещениях применяются различные методы коллективной защиты: уменьшение уровня шума в источнике возникновения; рациональное размещение оборудования; борьбу с шумом на путях его распространения, в том числе изменения направленности излучения шума, использование звукоизоляции и установку глушителей шума, акустическую обработку поверхностей помещения.

Ультразвук – колебания воздушной среды с частотой более 11,2 кГц.  Источники ультразвука – оборудование, в котором  генерируются ультразвуковые колебания для выполнения технологических процессов, технического контроля и измерений

Широкое применение в медицине, в промышленности находит оборудование излучающее ультразвук, при воздействии которого на организм человека возникают изменения в функционировании центральной и периферической нервной системы, сердечно-сосудистой и эндокринной системы, слухового и вестибулярного аппарата. При длительном воздействии низкочастотного ультразвукового оборудования наблюдаются головная боль, головокружение, расстройство сна, раздражительность, ухудшение памяти. повышенная чувствительность к звукам и т.п.

Для снижения воздействия ультразвука на организм человека необходимо:

снизить интенсивность ультразвука в источнике;

выбирать частоту ниже 22 кГц, чтобы уменьшить действие высокочастотного шума;

оснастить установку звукопоглощающими и звукопоглощающими кожухами, применением резонаторных поглотителей;

размещать ультразвуковое оборудование в звукоизолированных помещениях или кабинах с дистанционным управлением;

установкой блокировок, при открывании кожухов и защитных экранов;

применение специального оборудования.

Рабочие места операторов ультразвуковых установок должны, по возможности, быть фиксированы, ограждены ширмами для создания световой и звуковой тени. Для защиты от электромагнитных полей рабочих местах операторов необходимо экранировать провода соединения звукового генератора с преобразователем.

Для снижения интенсивности инфразвука, генерируемого технологическими процессами и оборудованием следует достигать за счет применения комплекса мероприятий включающих:

ослабление мощности в источнике его образования на стадии проектирования, конструирования, проработки архитектурно-планировочных решений, компоновки помещений и расстановки оборудования;

изоляцию источников инфразвука в отдельные помещения;

использование кабин наблюдения с дистанционным управлением технологическим процессом;

уменьшение интенсивности инфразвука в источнике путем введение в технологические цепочки специальных демпфирующих устройств малых линейных размеров, перераспределяющих спектральный состав инфразвуковых колебаний в область более высоких частот;

укрытие оборудования кожухами, имеющими повышенную звукоизоляцию в области инфразвуковых частот;

отделку поверхностей производственных помещений конструкциями, имеющими высокий коэффициент звукопоглощения инфразвуковых частот;

снижение вибрации оборудования, если инфразвук имеет вибрационное происхождение;

установку специальных, снижающих инфразвук глушителей на воздухозаборные шахты, выбросные отверстия компрессоров и вентиляторов;

увеличение звукоизоляции ограждающих конструкций помещений в области инфразвуковых частот путем повышения их жесткости с помощью применения неплоских элементов;

заделку отверстий и щелей в ограждающих конструкциях производственных помещениях;

использование глушителей инфразвука интерференционного типа.

Защита от шума в источнике. Акустические средства защиты: звукоизоляция, звукопоглощение, демпфирование, виброизоляция и глушители шума (активные, резонансные и комбинированные). Архитектурно-планировочные и организационно-технические методы защиты от шума. Посадка зеленых насаждений

Нормирование шума осуществляется в соответствии с ГОСТ 12.1.003-83 «Шум. Общие требования безопасности» и СН 2.2.4/2.1.8562-96 «Шум на рабочих местах ….»

Нормирование допустимых уровней шума ведется для различных рабочих мест: конструкторских бюро (50 дБ); помещений управления (60); участков точной сборки (65), рабочих мест в производственных помещениях (80дБ).

ГОСТ 12.4.051-87 «ССБТ. СИЗ органов слуха и т.д.» противошумные наушники, шлемофоны, наушники, заглушки, вкладыши.

Вибрация и её физико-гигиеническая характеристика (параметры и воздействие на организм человека).

Вибрация – колебательные движения упругих тел, конструкций, сооружений около положения равновесия. Вибрацией – называется механическое колебательное движение, заключающееся в перемещении тела как целого. Вибрация передается только при механическом контакте одного тела с другим. По временной характеристике разделяются на постоянную и непостоянную.

Существуют три основных механизма возбуждения вибрации. Первый связан с силами инерции и криволинейностью пути и вызывает вибрацию наземного транспорта, существенно возрастающую при движении по неровностям дороги. Второй – с неуравновешенными силами ударного действия и вызывает вибрацию при ковке, клепке, штамповке деталей. Третий связан с несовпадением геометрического центра масс вращающейся системы и вызывает вибрацию в механизмах, где есть вращающиеся части.

Вибрация воздействует на человека через опорные поверхности, оказывает влияние на весь организм стоящего или сидящего человека и называется общей. Наблюдается на всех видах транспорта и при работе вблизи источника вибрации (промышленного оборудования) и поэтому подразделяется на транспортную и технологическую (станки, оборудование).

Вибрация воздействующая только на определенную часть тела человека (руку) – называется локальной. Локальная возникает при использовании ручных механизмов (отбойный механизм, ручная дрель, бензопилы, шлифовальные машины и т.п.). Локальная вибрация может передаваться на руки станочника, например, при работе на заточном, сверлильном станках.

Особым видом вибрации являются укачивания и вращения.

Долговременное общей вибрации на тракториста может привести в возникновению нежелательных последствий на позвоночнике. Общая вибрация вызывает варикозное расширение вен на ногах, геморрой, ишемическую болезнь сердца, гипертонию.

Чрезмерное воздействие локальной вибрации может привести к заболеванию кровеносной, нервной систем, мышц, костей и суставов верхних конечностей, так называемую виброболезнь.

Укачивание – «морская болезнь» - происходит при вертикальном трансляционном колебательном движении (качке на судне) с частотой около 0,2 Гц.

Вибрация нормируется для каждого установленного направления в каждой октавной полосе частот. Гигиенические нормы вибрации установлены исходя  из того, что рабочие подвержены воздействию вибрации в течение смены продолжительностью 8 часов.

Средства и методы защиты от вибрации: вибродемпфирование, динамическое виброгашение, активная и пассивная виброизоляция (прокладки, пружины, виброперчатки, специальные кресла у трактористов и т.д.).

Защита от вибрации осуществляется: техническими мероприятиями (выбор, изменение технологического процесса, снижение динамических нагрузок, замена кривошипных механизмов на равномерно вращающиеся, балансировка вращающихся масс, манипуляторы);  организационные (ограничение числа рабочих); санитарно-гигиенические (СИЗ виброгасящие рукавицы, нагрудники, костюмы и обувь). Опорная виброизоляция, подвесная виброизоляция, через упругую связь, резиновые виброизоляторы, пробки, стальные пружины, прокладки из войлока, асбеста. Лечебно-профилактические мероприятия: массажи, теплые ванночки, витаминизация организма способствуют снижению вредоносного воздействия вибрации на организм человека.

Пассивная -  виброизоляция рабочего места.

ГОСТ 12.1.012-90 «ССБТ. Вибрационная безопасность. Общие требования» и СН 2.2.4/2.1.8.566-96.

Роль света в жизни человека. Основные светотехнические понятия и величины. Гигиенические требования к освещению. Цвет и функциональная окраска. Виды производственного освещения. Источники света. Нормирование и контроль освещения. Ультрафиолетовое облучение, его значение и организация на производстве. Средства защиты органов зрения.

Искусственное и естественное освещение.

Производственное освещение характеризуется количественными и качественными показателями. Светящиеся природные и искусственно созданные тела испускают электромагнитные излучения с различными длинами волн, но только излучения с длиной волн от 380 до 780 нм вызывают у нас ощущения света и цвета. Поэтому светом называют характеристику светового стимула. Создающего определенное зрительное ощущение, а излучение указанного диапазона длин волн – видимой частью спектра. При воздействии на глаз излучений с длиной волны меньше 380 нм (инфракрасное излучение) и более 780 нм (ультрафиолетовое излучение), которые световых и цветовых ощущений у человека не вызывают.  Если тело испускает световой поток, содержащий весь диапазон излучений от 380 до 780 нм, и притом мощность излучений одинакова, цвет этого тела воспринимается как белый. Пропуская через призму белый цвет, его можно разложить на спектр монохромных излучений, которые вызывают ощущение различных цветов: красный - оранжевый – желтый – зеленый – голубой – синий - фиолетовый. Разделение чисто условное, глаз воспринимает гораздо больше цветов и оттенков.   Большинство предметов мы видим в отраженном свете. Большинство предметов не имеет собственного свечения. Собственного света они не излучают. Они отражают свет Солнца. Цвет несветящихся непрозрачных предметов обусловлен спектральным составом отраженного от них светового потока, а прозрачных предметов – составом прошедшего через них излучения.

Практически каждый вид деятельности связан с необходимостью различения какого-либо объекта. Недостаточная освещенность рабочей зоны и пониженная контрастность вызывают напряженность зрительного органа, что может привести к нарушению зрения.

В условиях, когда общая освещенность отсутствует, выполнение работ невозможно без индивидуальных головных или ручных светильников, местного освещения. Чрезмерная яркость (дуга электросварки)  может привести к ослеплению. Человеческий глаз защищается от поражения слишком ярким светом с помощью мигательного рефлекса, поворота глаз, движения головы. Ослепление от сварочной дуги может быть преодолено с помощью СИЗ (защитные очки со светофильтрами).

Для создания нормальной световой среды применяются разные системы освещения

Количественные: световой поток мощность световой энергии, измеряется в люменах (лм); сила света – пространственная плотность светового потока (в канделах, кд); освещенность -  поверхностная плотность светового потока (в люксах, лк); яркость поверхности – светотехническая величина воспринимаемая глазом.

По функциональному назначению искусственное освещение делится на рабочее (равномерное или локальное), комбинированное (общее и местное); аварийное, специальное, охранное, дежурное, эвакуационное, бактерицидное и др.

Для обеспечения нормальной работы органа зрения производственное освещение нормируется в зависимости от вида освещения (естественное, искусственное – общее или комбинированное, совмещенное и разряда зрительной работы.

Естественное – освещение помещений через световые проемы (боковое, верхнее, комбинированное).

Рабочее – предназначено для освещения производственных помещений, мест прохода людей, проезда транспортных средств.

Аварийное – для обеспечения эвакуации людей при внезапном отключении источника тока, временного продолжения работы для обеспечения работы, предупреждения травматизма и аварий, где недопустимо прекращение работ.

Охранное – вдоль границ охраняемых в ночное время территорий предприятий и организаций.

Дежурное – освещение в нерабочее время.

Общее – светильники размещены в верхней зоне помещений.

Местное – дополнительное к общему с концентрированным световым потоком на рабочих местах.

Нормы освещенности по СНиП 23-05-95

В зависимости от точности работы (наивысшей, очень высокой, высокой точности, средней точности, малой точности грубая точность и т.п. освещенность должна составлять от 200 до 1200 люкс.

Источники искусственного освещения:

газоразрядные лампы – имеют высокую световую отдачу, (до 100 лм/Вт) и большой срок службы (10000 – 14000 час.). Световой поток близок по спектру к естественному, однако имеет недостаток – пульсация;

лампы накаливания во избежание пожаров должны быть заключены в плафоны.

Лазеры – устройства с когерентным почти не рассеивающимся излучением. Лазерное излучение в настоящее время находит более широкое применение в промышленности, медицине (использование лазерного скальпеля при хирургических операциях в офтальмологии, онкологии, дерматологии, физиотерапии).

При длительной работе с лазерными установками отмечаются жалобы на утомляемость зрительного анализатора, режущих болей в области глазного яблока, слезотечение, непереносимость яркого света, изменение кожного покрова.

При эксплуатации лазерных установок могут возникнуть следующие вредные и опасные производственные факторы:

само лазерное излучение (прямое или отраженное);

сопутствующие ультрафиолетовое, инфракрасное излучения;

токсичные газы и пары от лазерных систем с прокачкой, от хладоагентов и др.;

повышенная температура;

опасность взрыва в система лазерной накачки;

опасное высокое напряжение в цепях управления и питания;

электромагнитное, радиочастотное излучение;

шум, вибрация.

Биологическое воздействие лазерного излучения на организм человека определяется механизмом взаимодействия излучения с тканями (тепловой, фотохимической, ударно-акустической) и завит от длины волны излучения, длительности импульса, частоты следования импульса, площади облучаемого участка.

Лазерное излучение с длиной волны от 380 до 1400 нм представляет наибольшую для сетчатой оболочки глаза. Повреждение поверхности кожи может быть вызвано лазерным излучением любой длины волны спектрального анализа диапазона (180 – 510 нм).

По степени опасности генерируемого излучения лазеры подразделяются на четыре класса:

I – полностью безопасны;

II – выходное излучение опасно для глаз и кожи; отраженное - не опасно;

III – опасность представляет не только выходное, но и отраженное излучение для глаз на расстоянии 10 см от отражающей поверхности;

IY – диффузно отраженное излучение представляет опасность для глаз и кожи на расстоянии 10 см от отражающей поверхности.

Предупредительный дозиметрический контроль заключается в определении максимальных уровней энергетических параметров лазерных излучений на границе рабочей зоны.  Индивидуальный дозиметрический контроль заключается в измерении уровней параметров излучения воздействующих на глаза кожу конкретного работника в течение рабочего дня.

Безопасность на рабочих местах должна достигаться за счет конструкции лазерной установки. Для предотвращения пожаров на лазерах IY класса в качестве ограничителей следует применять хорошо охлаждаемые неплоские металлические мишени или огнеупорные материалы достаточной толщины. Безопасность труда при работе с открытыми лазерными установками достигается за счет применения средств индивидуальной защиты.

При работе с лазерной установкой обслуживающему персоналу запрещается осуществлять наблюдение прямого или отраженного лазерного излучения при эксплуатации лазеров II  -  IY класса без средств индивидуальной защиты;  размещать в зоне лазерного пучка предметы могущие вызвать лазерное отражение луча.

Ионизирующие – излучения корпускул (элементарных частиц) и потоки фотонов (квантов электромагнитного поля), которые при движении через вещество ионизируют его атомы и молекулы.

Наиболее известны альфа-частиц (ядра гелия состоящие из двух протонов и двух нейтронов), бета-частицы (электрон) и гамма-излучение (кванты электромагнитного поля определенного диапазона частот).

Природное ионизирующее излучение повсюду, как в виде космических лучей, так и в воздухе в виде радона. Проникает в организм человека вместе с пищей, водой. Естественный радиоактивный фон существовал на Земле всегда – природная радиация.

Физическое явление радиоактивности было открыто в 1896 году и стало применяться широко в различных отраслях экономики, в промышленности, медицине (атомные электростанции, рентгеновская аппаратура, приборы пожарной сигнализации и др.)

Ионизирующее излучение оказывает на организм человека: соматическое (острая лучевая болезнь, хроническая лучевая болезнь, местные лучевые повреждения; сомато-стохастические (злокачественные опухали, нарушение развития плода, сокращение продолжительности жизни) и генетические (генные мутации, аберрация).

Защищаться от внешнего ионизирующего излучения можно установив на пути движения излучений защитный экран, применять СИЗ (специальная одежда от альфа- и бета-излучения – костюмы, перчатки, капюшоны, сапоги, очки, свинцовые фартуки).

Внутреннее облучение связано с попаданием в организм человека радиоактивных веществ и оно во много раз опаснее внешнего облучения. Уменьшения воздействия можно добиться за счет применения СИЗ органов дыхания, специального рациона питания.

Закрытыми источниками ионизирующих излучений называются источники, устройство которых исключают попадание радиоактивных веществ в воздух рабочей зоны. Защитные мероприятия для таких источников заключаются в уменьшении интенсивности дозы излучения за счет установки защитных экранов (просвинцованное стекло, бетон, металл, барритобетон, вода), защитой количеством применяемых материалов, временем и расстоянием.

Дозиметрический контроль. НРБ -99,  Основные санитарные правила обеспечения радиоактивной безопасности (ОСПОРБ –99); ГОСТ 12.4.120-83 «СИЗ от ионизирующих излучения.  Общие требования»

Неионизирующее излучение – объединяет все излучения и поля электромагнитного спектра, у которых не хватает энергии для ионизации материи – это излучение с длиной волны более 1000 нм и энергией меньше 10 кэВ, заведомо недостаточной чтобы ионизировать вещество.

Ультрафиолетовое излучение представляет собой форму оптического излучения с более короткой длиной волны и большей энергией фотонов (частиц излучения), чем видимый свет. Общеизвестное действие ультрафиолетового излучения – это солнечный ожог. Для защиты от его воздействия применяется спецодежда, шляпы с полями, солнцезащитные кремы.

При проведении электросварочных работ ультафиолетовое излучение сварочной дуги вызывает ожог глаз (фотоавтольмия). При длительном воздействии может привести к отслоению сетчатки глаза, возникновению катаракты, ускоряет старение кожи, развитие рака кожи.

СН 4557-88 «Санитарные нормы ультрафиолетового излучения в производственных помещения»

Инфракрасное – это тепловое излучение испускается всеми телами. Оно существенно при высокой температуре поверхности тела (расплавленный металл, лампы накаливания, термически обрабатываемые поверхности и т.п.). Инфракрасное излучение имеет длину волны от 780 нм до 1 мм. Поскольку инфракрасное излучение не проникает глубоко в ткани организма то основными объектами его воздействия являются кожа и глаза. Длительное воздействие инфракрасного излучения на глаза может привести к помутнению хрусталика глаза (катаракта). Средства защиты глаз от этого излучения – защитные очки.

В пределе нулевой частоты электромагнитное поле расщепляется на статические и магнитные поля. Для защиты от их вредного воздействия необходимо применять меры защиты путем заземления, экранирования источников поля либо работника, применять антистатическую спецодежду и спецобувь. При работах с источниками постоянных магнитных полей применяются специальные антистатические СИЗ не позволяющие накапливаться зарядам большой мощности, путем использования манипуляторов, автоматизации, роботизации производственных процессов.

При работах в трансформаторных подстанциях, в помещениях с распределительными устройствами широко применяются передвижные и переносные экраны, экранирующие комплекты одежды, работа с пультов дистанционного управления.

СИЗ

Маска сварщика. Защитные очки.          Спецодежда,  спецобувь, кремы, мази, молоко, питание.

СИЗ органов дыхания: противогазы, респираторы, марлевые повязки;

СИЗ органов слуха: бируши; наушники

СИЗ органов зрения: очки; светофильтры

Технические мероприятия: герметизация вредного производственного процесса; автоматизация; роботизация. Замена вредных веществ менее токсичными.

Техническое обеспечение безопасности технологических процессов.

Технические мероприятия: герметизация вредного производственного процесса; автоматизация; роботизация, замена вредных веществ менее токсичными, защита расстоянием, экранирование, недоступность, нейтрализация, герметизация

Оборудование опасного оборудования системами блокировок: механических, электрических;

Системами автоматической сигнализации

Системами дозиметрического контроля уровня запыленности, загазованности; взрывоопасных концентраций

Система организационно-технических, санитарно-гигиенических мероприятий, обеспечивающих безопасность труда.

Кроме перечисленных выше мероприятий следует отнести и такие мероприятия, как:

предварительные и периодические медицинские осмотры состояния здоровья;

обеспечение профилактическим спецпитанием

обеспечение санитарно-бытовыми помещениями и устройствами (душевые, умывальные, респираторные, централизованные стирка и ремонт спецодежды и др.);

профилактории, ингалятории

обучение безопасным и безвредным методам работы.


Смотрите также