.

Автоматизация систем вентиляции кондиционирования


Что собой представляет автоматизация систем кондиционирования и вентиляции

Что собой представляет автоматизация систем кондиционирования и вентиляции

Сегодня системы вентиляции и кондиционирования присутствуют во всех вновь строящихся здания. Их закладывают на стадии разработки проектов, потому что они обеспечивают: вентиляция – отток загрязненного воздуха и подачу свежего, кондиционирование – обеспечивает комфортные условия нахождения людей в помещениях, а именно приводит влажность и температуру к нормальным показателям. Так как обе системы достаточно сложные, то для них разрабатывается автоматизация, которая следит за параметрами их работы. В этой статье разберемся, что собой представляет автоматизация систем кондиционирования и вентиляции.

Зачем нужна

Во-первых, надо отметить, что нормальными условиями внутри помещения считаются:

  • температура +20-24С;
  • влажность – 40-65%;
  • скорость перемещения воздуха – 1 м/с.

Чтобы контролировать эти параметры, необходимо тщательно просчитать и собрать автоматизацию систем отопления, вентиляции и кондиционирования воздуха. При этом проектом определяются сразу места их установки и функциональное назначение. Очень часто в зданиях с большими габаритами и множеством помещений применяется система кондиционирования, которая включает в себя несколько подсистем. И, как показывает практика, все подсистемы работают в индивидуальном режиме. Чтобы за всеми ими проследить, и производится установка автоматики системы кондиционирования.

Необходимо понимать, что система кондиционирования и вентиляции достаточно затратна в плане потребления электроэнергии. Поэтому очень важно правильно настроить автоматику, обеспечивающую контроль над кондиционерами и вентиляторами. И если с последними проблем не возникает, потому что их настраивают на определенную скорость вращения, которая практически все время будет постоянной, то у кондиционеров настройка более сложная.

Ведь их работа в основном зависит от влажности и температуры воздуха внутри помещений. А эти две величины непостоянные. А значит, автоматику придется настраивать так, чтобы она в первую очередь контролировала эти два параметра, а затем передавала сигнал на кондиционеры. И они будут по мощности работать то с увеличением, то со снижением. И здесь настройку можно сделать так, чтобы и внутри помещений условия были нормальными, и потребляемая мощность кондиционеров не была максимальной.

За это отвечает диспетчеризация систем вентиляции и кондиционирования. А именно несколько приборов, которые обрабатывают данные и передают их на оборудование. При этом выдерживается строго последовательность алгоритмов, которые программируются индивидуально для каждого вида оборудования.

Автоматизация вентиляции и кондиционирования

Существуют три вида систем автоматизации вентиляции и кондиционирования: частичная, комплексная и полная. Чаще всего используют две первые. Сама автоматика состоит из нескольких блоков, контролирующих разные процессы:

  • датчики или, как их называют специалисты, первичные преобразователи;
  • вторичные;
  • регуляторы автоматические;
  • исполнительные механизмы, в некоторых схемах применяются регулирующие приборы;
  • электротехническая аппаратура, с помощью которой регулируются электроприводы вентиляторов и кондиционеров.

В основном все эти механизмы и приборы, входящие в состав промышленной автоматизации, являются стандартными. То есть, они производятся по ГОСТам серийно. Но есть некоторые из них, которые выпускаются мелкими партиями и предназначаются именно для систем кондиционирования воздуха, для систем отопления и вентиляции. К примеру, датчики для контроля над влажностью воздуха или температурные регуляторы марки Т-8 или Т-48.

Обычно все приборы, которые показывают параметры условия внутри помещений, устанавливают в специальный отдельный щит. При этом необходимо понимать, что чем больше подсистем в здании, тем больше щитов приходится устанавливать. Это усложняет проведение контроля над параметрами, которые необходимо периодически снимать. Чтобы упростить данный процесс, сегодня в разветвленных системах кондиционирования и вентиляции организуется пульт управления, за которым сидит оператор. Один человек полностью контролирует весь процесс. При этом с помощью интернета решается задача сигнализации и возможности контролировать все параметры на расстоянии. То есть, на телефон может прийти SMS с данными обо всех происходящих процессах.

Что касается датчиков, то очень важно правильно расположить их по помещениям с определенной частотой размещения. Именно эти небольшие приборы начинают реагировать на изменения параметров воздуха. Именно они дают толчок к началу изменения работы оборудования. Но в функции систем автоматизации вентиляции и кондиционирования воздуха входит не только отслеживание условия внутри помещения здания. В каждом воздуховоде устанавливаются датчики, которые отслеживают, а не попало ли что-нибудь внутрь. Ведь даже небольшой посторонний предмет может попасть в оборудование и вывести его из строя. Это очень важно и для заслонок, которыми перекрываются отвод и подача воздуха.

Любая автоматизация включает в себя и систему оповещения и сигнализации. Здесь стандартно: звуковая и световая.

Диспетчеризация вентиляции и кондиционирования

Диспетчеризация – это сбор сигналов с датчиков и на их основе управление всеми процессами. Основными функциями диспетчеризации вентиляции и кондиционирования являются:

  1. Индексация поступающих сигналов от датчиков, их обработка и настройка.
  2. Подача сигнала диспетчеру, если в системе произошли отклонения от заданных параметров или возникла нестандартная или аварийная ситуация.
  3. При необходимости производится перевод работы всей схемы в аварийный режим.
  4. Если возник пожар в здании, включается система отвода дыма.
  5. Строго отслеживаются параметры воздуха, которые поддерживаются на всем протяжении работы оборудования.
  6. При необходимости регулировка заданных параметров.
  7. В часы пониженных нагрузок системы вентиляции и кондиционирования переводятся в режим экономии электроэнергии и других видов энергоносителей (пар, горячая вода).
  8. Обрабатываются данные в момент включения или отключения.

В зависимости от того, какие требования заказчик предъявляется к кондиционированию, автоматизация может производиться с использованием свободно-контролируемых приборов (контроллеров) или с добавлением так называемых программно-аппаратных комплексов. Второй вариант дороже, но он дает возможность объединить в одном пункте контроля все рычаги управления.

При этом необходимо понимать, что ситуации в больших зданиях с несколькими подсистемами могут быть разными. Поэтому кондиционирование и вентиляция разделяется на модули в плане обеспечения диспетчеризации. И каждый модуль при возникновении внештатной ситуации может работ автономно.

Возможности диспетчеризации:

  • можно организовать управление большим количеством модулей, которые по мере необходимости подключаются параллельно;
  • настройка сбора данных, которые необходимы пользователю;
  • возможность передача данных на другие компьютеры;
  • контролируется телефонная и компьютерная сети;
  • автоматизация процессов передачи данных от нижних уровней к пульту управления;
  • передача данных на телефон.

В принципе, необходимо отметить, что технологическая схема кондиционирования и вентиляции здания, в которую входит контроллер, является стандартной, а точнее базовой. Ее можно изменять под нужные требования с дополнением. К примеру, можно изменить контроль температуры внутри помещений не через канальный датчик, установленный в воздуховодах системы отводной вентиляции, а через каскадный, который устанавливается непосредственно в самом помещении. Или можно внести в конфигурацию подогрев жалюзи в кондиционировании, которые открывают или закрывают проемы.

То есть, диспетчеризацию систем вентиляции и кондиционирования с учетом установленных контролеров можно развивать по разным схемам. И при этом можно подобрать такую технологическую цепочку, которая будет выгодна именно для определенного вида зданий, где установлены разные требования к отдельным помещениям.

Сегодня все чаще звучит термин – «умный дом». По сути, это автоматизация контроля над всеми сетями, которые обеспечивают нормальную жизнедеятельность человека в собственном доме. Конечно, это обширная сеть, в задачи которой входит:

  • безопасность внешняя и внутренняя (последняя – это слежение за сотрудниками, выполняющих бытовую работу в доме);
  • контроль и слежение за аварийными ситуациями: утечка газа, холодной или горячей воды;
  • создания благоприятного климата внутри помещений, а это касается кондиционирования, отопления и вентиляции.

При этом диспетчеризация строго контролирует всю работу инженерных сетей. И если есть необходимость изменить какой-либо параметр, нет нужды бегать по этажам к щитам автоматики, чтобы провести настройку. «Умный дом» снабжается отдельно установленным мини-пультом или мини-блоком, через который и проводится регулирование и настройка требуемых режимов.

Самое главное, что вся автоматизация завязана на диспетчеризации с установленных в нее контроллеров. То есть, технологическая схема здесь точно такая же, как и на любом объекте, где присутствуют модульные схемы кондиционирования и вентиляции.

aeroclima.ru

3.2 Автоматизация систем вентиляции, кондиционирования воздуха

В современных требованиях к автоматизированным системам вентиля­ции (СВ) и кондиционирования воздуха (СКВ) содержатся два противоре­чивых условия: первое - простота и надежность эксплуатации, второе -высокое качество функционирования.

Основным принципом в технической организации автоматического управления СВ и СКВ является функциональное оформление иерархиче­ской структуры подлежащих выполнению задач защиты, регулирования и управления.

Всякая промышленная СКВ должна быть снабжена элементами и уст­ройствами автоматического пуска и останова, а также устройствами защи­ты от аварийных ситуаций. Это первый уровень автоматизации СКВ.

Второй уровень автоматизации СКВ - уровень стабилизации режимов работы оборудования.

Техническая реализация третьего иерархического уровня - в настоящее время успешно разрабатывается и внедряется в промышленности (СВ и СКВ).

Решение задач третьего уровня уравнения связано с обработкой ин­формации и формированием управляющих воздействий путем решения дискретных логических функций или проведения ряда определенных вы­числений.

Трехуровневая структура технической реализации управления и регу­лирования работой СКВ позволяет осуществить организацию эксплуатации систем в зависимости от специфики предприятия и его служб эксплуатации. Регулирование систем кондиционирования воздуха основано на анализе стационарных и нестационарных тепловых процессов. Дальнейшая задача состоит в автоматизации принятой технологической схемы управления СКВ, которая автоматически обеспечит заданный режим работы и регули­рования отдельных элементов и системы в целом в оптимальном режиме.

Раздельное или совокупное поддержание заданных режимов работы СКВ проводятся приборами и устройствами автоматики, образующими как простые локальные контуры регулирования, так и сложные многоконтур­ные системы автоматического регулирования (САР). Качество работы СКВ определяется главным образом соответствием создаваемых параметров микроклимата в помещениях здания или сооружения их требуемым значе­ниям и зависит от правильности выбора как технологической схемы и ее оборудования, так и элементов системы автоматического управления этой схемы.

Регулирование по оптимальному режиму

В последнее время начинают применять метод регулирования системы кондиционирования воздуха по оптимальному режиму (разработанный А. Я. Креслинем), позволяющий во многих случаях избежать повторного подогрева воздуха, охлажденного в оросительной камере, а также более рационально использовать теплоту рециркуляционного воздуха. В любой момент времени воздух в установке кондиционирования проходит тепло-влажностную обработку в такой последовательности, при которой расходы теплоты и холода оказываются наименьшими.

Метод регулирования систем кондиционирования воздуха по опти­мальному режиму энергетически более эффективен. Однако надо отметить, что реализация регулирования по методу оптимальных режимов требует более сложной автоматики, что сдерживает его практическое применение.

Метод количественного регулирования систем кондициони-рования воздуха. Сущность метода заключается в регулировании тепло- и холодо-производительности установок кондиционирования воздуха путем изменения расхода обрабатываемого воздуха.

Регулирование расхода воздуха осуществляется изменением произво­дительности вентилятора путем изменения частоты вращения ротора элек­тродвигателя, применения регулируемых гидравлических или электриче­ских муфт (соединяющих электродвигатель с вентилятором), использова­ния направляющих аппаратов перед вентиляторами.

Регулирование систем кондиционирования воздуха (см. рис. 3) обеспе­чивается с помощью контуров регулирования. Установленный в рабочей зоне помещения или в вытяжном канале чувствительный элемент терморе­гулятора воспринимает отклонения температуры. Терморегулятор управля­ет воздухоподогревателем второй ступени подогрева ВП2 чаще всего пу­тем регулирования подачи теплоносителя клапаном К.

Постоянство влажности воздуха в помещении обеспечивается двумя терморегуляторами точки росы, чувствительные элементы которых вос­принимают отклонения температуры воздуха после оросительной камеры или воды в ее поддоне. Терморегулятор зимней точки росы управляет по­следовательно клапаном К2 воздухоподогревателя первой ступени подогре­ва ВП1 и воздушными клапанами (заслонками) К, К4, К;. Терморегулятор летней точки росы управляет подачей холодной воды из холодильной уста­новки в оросительную камеру с помощью клапана К6.

Для более точного регулирования влажности воздуха применяют влагорегуляторы, чувствительные элементы которых устанавливают в поме­щении. Влагорегуляторы управляют клапанами К2- К6 той же последова­тельности, что и терморегуляторы точки росы.

Рисунок 3. - Система кондиционирования воздуха с первой циркуляцией

круглогодичного действия:

а) схема СКВ; б) процессы обработки воздуха в I-d-диаграмме; в) графики регули­рования; ПВ - приточный вентилятор; ВВ - вытяжной вентилятор; Н - насос.

studfiles.net

Автоматизация систем вентиляции и кондиционирования воздуха - Стр 3

Автоматизация систем вентиляции и кондиционирования воздуха 21

Прямоточная система кондиционирования воздуха

Рис. 1.12.

22 Автоматизация систем вентиляции и кондиционирования воздуха

Если невозможно получить теплоснабжение от сети центрального отопления, используют электрический калорифер с несколькими ступенями мощности (до четырех).

Расход воздуха в приточно вытяжных системах обеспечивается изменением производительности приточно вытяжных вентиляторов. Если при низкой температуре наружного воздуха полной мощности электрического калорифера для поддержания заданной температуры недостаточно, то снижается производительность (скорость враще ния) вентиляторов. Следует помнить, что при снижении скорости вращения вентиляторов количество поступившего в помещение воз духа может не соответствовать требованиям санитарных норм. Однако это позволяет обеспечить работу центрального кондиционера до тем пературы наружного воздуха минус 20–25°С. Аналогичная ситуация возникает в летний период в случае работы на охлаждение при высо кой (выше расчетной) температуре наружного воздуха.

Вв центральном канале устанавливается датчик потока воздуха

идатчик перегрева калорифера. При отсутствии потока воздуха электрокалорифер выйдет из строя через 10–15с, поэтому для его за щиты устанавливается датчик потока. Помимо этого, в калориферах, как правило, устанавливают два термостата:

•термостат защиты от перегрева с самовозвратом (температура срабатывания 50 °С);

•термостат защиты от возгорания с ручным возвратом (темпе ратура срабатывания 150 °С).

Первый термостат срабатывает обратимо, то есть после того, как температура воздуха за электрокалорифером снизится до 40 °С, кало рифер включится снова. Однако если такое выключение случится 4 раза в течение 1 часа, то произойдет аварийное отключение системы. При срабатывании второго термостата система отключится, вклю чить ее повторно можно будет только вручную после устранения неисправности.

Контроль запыленности фильтра оценивается падением давления на нем, которое измеряется дифференциальным датчиком давления. Датчик измеряет разность давлений воздуха до и после фильтра.

Допустимое падение давления на фильтре указывается в его пас порте (обычно 150–300Па). Это значение устанавливают при наладке системы на дифференциальном датчике давления (уставка датчика). Когда падение давления достигает значения уставки, от датчика посту пает сигнал о предельной запыленности фильтра и необходимости его обслуживания или замены. Если в течение 24 часов после выдачи сиг нала предельной запыленности фильтр не будет очищен или заменен, произойдет аварийная остановка системы.

Автоматизация систем вентиляции и кондиционирования воздуха 23

Аналогичные датчики устанавливаются на вентиляторах. Если выйдет из строя вентилятор или ремень привода вентилятора, то сис тема будет остановлена в аварийном режиме.

1.4.РЕГУЛИРОВАНИЕ СКВ ПО ОПТИМАЛЬНОМУ РЕЖИМУ

Термодинамическая модель подготовки приточ ного воздуха, основанная на регулировании влагосодержания по тем пературе точки росы, обуславливает большой перерасход холода и тепла. Однако широта ее использования связана с отсутствием быстродействующих точных регуляторов влажности.

Впоследнее время применяют метод регулирования СКВ по опти мальному режиму, позволяющему избежать повторного подогрева воз духа. Термодинамическая модель по оптимальному режиму меняется непрерывно, обеспечивая наименьший расход холода и тепла.

Втаких моделях учитывается взаимное влияние двух контуров регулирования: температуры и влажности. Связанные системы регу лирования с двумя стабилизирующими контурами описываются довольно сложными математическими зависимостями, а их аппара турная реализация имеет высокую стоимость. Поэтому регулирова ние по оптимальному режиму применяется в технологическом или прецизионном кондиционировании воздуха.

Из описанных выше схем регулирования центральных кондицио неров вытекает, что для нормального функционирования установки центрального кондиционирования воздуха должна реализовываться определенная технология, обеспечивающая поддержание требуемого микроклимата в помещении. Для этого разрабатываются алгоритмы работы центральных кондиционеров по показаниям датчиков темпе ратуры, влажности, давления, величин токов, напряжения на элемен тах управления и т. д.

Реализация алгоритмов осуществляется исполнительными и за щитными элементами (электродвигатели, клапаны, заслонки и др.).

Таким образом, система автоматического управления установкой центрального кондиционирования должна выполнять следующие функции:

• управляющие (включение, выключение, задержки);

•защитные (отключение при авариях, предупреждение повреж дений установки);

•регулирующие (поддержание комфортных условий при минимальных эксплутационных расходах).

24 Автоматизация систем вентиляции и кондиционирования воздуха

1.5.УПРАВЛЯЮЩИЕ ФУНКЦИИ СИСТЕМ АВТОМАТИЗАЦИИ СКВ

Управляющие функции обеспечивают выполне ние заложенных алгоритмов нормального функционирования систе мы. К ним относятся функции:

•последовательность пуска;

•последовательность останова;

•резервирующие и дополняющие.

1.5.1. ПОСЛЕДОВАТЕЛЬНОСТЬ ПУСКА

Для обеспечения нормального пуска кондицио нера необходимо соблюдать следующую последовательность:

1. Предварительное открытие воздушных заслонок

Предварительное открытие воздушных заслонок до пуска венти ляторов выполняется в связи с тем, что не все заслонки в закрытом состоянии могут выдержать перепад давлений, создаваемый вентиля тором, а время полного открытия заслонки электроприводом доходит до 2 мин. Входное напряжение управления электроприводом может быть 0–10В (пропорциональное позиционное управление при плав ном регулировании) или ~24 В (~220 В) – двухпозиционное управле ние (открыто – закрыто).

2. Разнесение моментов запуска электродвигателей

Асинхронные электродвигатели имеют большие пусковые токи. Так, компрессоры холодильных машин имеют пусковые токи, в 7–8раз превышающие рабочие (до 100 А). Если одновременно запустить вентиляторы, холодильные машины и другие приводы, то из за боль шой нагрузки на электрическую сеть здания сильно упадет напряже ние, и электродвигатели могут не запуститься. Поэтому запуск элект родвигателей необходимо разносить по времени.

3. Предварительный прогрев калорифера

Если включить кондиционер, не прогрев водяной калорифер, то при низкой температуре наружного воздуха может сработать защита от замораживания. Поэтому при включении кондиционера необходи мо открыть заслонки приточного воздуха, открыть трехходовой кла пан водяного калорифера и прогреть калорифер. Как правило, эта функция включается при температуре наружного воздуха ниже 12 °С.

В системах с вращающимся рекуператором сначала включается вытяжной вентилятор, затем начинает вращаться колесо рекуперато

Автоматизация систем вентиляции и кондиционирования воздуха 25

ра, а после его прогрева вытяжным воздухом включается приточный вентилятор.

Таким образом, последовательность включения должна быть сле дующей: вытяжная заслонка – вытяжной вентилятор – приточная заслонка – рекуператор – трехходовой клапан – приточный вентиля тор. Время запуска в летний период составляет 30–40с, в зимний – до 2 мин.

1.5.2.ПОСЛЕДОВАТЕЛЬНОСТЬ ОСТАНОВА

1.Задержка остановки вентилятора приточного воздуха

В установках с электрокалорифером необходимо после снятия нап ряжения с электрокалорифера охлаждать его некоторое время, не вы ключая вентилятор приточного воздуха. В противном случае нагрева тельный элемент калорифера (тепловой электрический нагреватель – ТЭН) может выйти из строя.

2. Задержка выключения холодильной машины

При выключении холодильной машины хладагент сосредоточится в самом холодном месте холодильного контура, т. е. в испарителе. При последующем пуске возможен гидроудар. Поэтому перед выключением компрессора сначала закрывается клапан, устанавливаемый перед ис парителем, а затем при достижении давления всасывания 2,0–2,5бар, компрессор выключается. Вместе с задержкой выключения компрес сора производится задержка выключения приточного вентилятора.

3. Задержка закрытия воздушных заслонок

Воздушные заслонки закрываются полностью только после оста новки вентиляторов. Так как вентиляторы останавливаются с задерж кой, то и воздушные заслонки закрываются с задержкой.

1.5.3. РЕЗЕРВИРУЮЩИЕ И ДОПОЛНЯЮЩИЕ ФУНКЦИИ

Дополняющие функции закладываются при ра боте в схеме нескольких одинаковых функциональных модулей (электрокалориферов, испарителей, холодильных машин), когда в за висимости от затребованной производительности включаются один или несколько элементов.

Для повышения надежности устанавливаются резервные вентиля торы, электронагреватели, холодильные машины. При этом периоди чески (например, через 100 ч) основной и резервный элементы меня ются функциями.

26 Автоматизация систем вентиляции и кондиционирования воздуха

1.6.ЗАЩИТНЫЕ ФУНКЦИИ СИСТЕМ АВТОМАТИЗАЦИИ СКВ

Кзащитным функциям относятся:

•защита водяного калорифера от замораживания;

•защита при выходе из строя вентиляторов или привода вентилятора;

•защита при повышении перепада давления на фильтрах (засо рение фильтров);

•защита холодильной машины при отклонении от допустимых значений питающего напряжения, давлений, температур, токов;

•защита электрокалорифера от перегрева и сгорания.

2.ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К СИСТЕМАМ АВТОМАТИЗАЦИИ СКВ

2.1. ОБЩИЕ ТРЕБОВАНИЯ

Требования к системам автоматизации условно можно разделить на три группы:

•общие требования для всех систем автоматизации;

•требования, учитывающие специфику СКВ;

•требования к системам автоматизации, определяемые конкрет ной СКВ.

Общие требования для всех систем автоматизации, независимо от объекта управления, определяются рядом общегосударственных, нормативных документов. Главным из них являются: ДСТУ БА 2.4. 3 95 (ГОСТ 21.4.08 93), СНиП 3.05.07.85 «Системы автоматизации», «Правила устройства электроустановок (ПУЭ)» и ДНАОП 0.00 1.32 01.

ВДСТУ БА 2.4. 3 95 (ГОСТ 21.4.08 93) изложены нормы и пра вила выполнения рабочей документации автоматизации технологи ческих процессов.

Сборник норм и правил СНиП 3.05.07 85 определяет порядок

иправила выполнения всех работ, связанных с производством, мон тажом и наладкой систем автоматизации технологических процессов

иинженерного оборудования.

ВПУЭ даны определения и общие указания по устройству элект роустановок, выбору проводников и электрических аппаратов по спо собу их защиты.

ВДНАОП 0.00 1.32 01 приведены правила устройств электрообо рудования специальных установок, в т. ч. в разделах 2 и 3 – электро оборудования жилых, общественных, административных, спортивных

Автоматизация систем вентиляции и кондиционирования воздуха 27

и культурно зрелищных зданий и сооружений, т. е. объектов, где установка СКВ обязательна. К отдельным положениям этих доку ментов мы будем обращаться в разделах, посвященных технической

2.2.ТРЕБОВАНИЯ, УЧИТЫВАЮЩИЕ СПЕЦИФИКУ СКВ

Эти требования в общем виде, представлены в разделе 9. СНиП 2.04.05 91*У «Отопление, вентиляция и кондици онирование» и регламентируют объем обязательных функций систем автоматизации: измерения, регулирования, сигнализации, автомати ческих блокировок и защиты технологического оборудования и т. п.

Автоматическое регулирование параметров обязательно для воз душного отопления, приточной и вытяжной вентиляции, работаю щей с переменным расходом, переменной смесью наружного и рецир куляционного воздуха и тепловой мощности калориферов 50 кВт и более, а также кондиционирования, холодоснабжения и местного доувлажнения воздуха в помещениях.

Основные контролируемые параметры СКВ:

•температура воздуха и теплоносителя (холодоносителя) на вхо де и на выходе устройств;

•температура наружного воздуха и в контрольных точках по мещения;

•давление тепло и холодоносителя до и после устройств, где давление изменяет свое значение;

•расход теплоты, потребляемой системы отопления и вентиляции;

•давление (разность давлений) воздуха в СКВ с фильтрами и теплоутилизаторами по требованию технических условий на оборудование или по условию эксплуатации.

Необходимость дистанционного контроля и регистрации основ ных параметров определяется технологическими требованиями.

Датчики следует размещать в характерных точках в обслуживае мой (рабочей) зоне помещения, в местах, где они не подвергаются влиянию нагретых или охлажденных поверхностей или струй при точного воздуха. Допускается установка датчиков в воздуховодах, если параметры в них не отличаются от параметров воздуха в поме щении или отличаются на постоянную величину.

Если отсутствуют специальные технологические требования к точности, то точность поддержания в точках установки датчиков должна быть ±1 °С по температуре и ±7 % по относительной влажности. В случае применения местных кондиционеров доводчиков с индиви

28 Автоматизация систем вентиляции и кондиционирования воздуха

дуальными регуляторами прямого действия точность поддержания температуры ±2 °С.

Автоматическое блокирование предусматривается в:

•системах с переменным расходом наружного и приточного воз духа для обеспечения минимально допустимой подачи воздуха;

•теплообменниках первого подогрева и рекуператорах для предотвращения их замораживания;

•контурах воздухообмена, циркуляции теплоносителя и хладагента, для защиты теплообменников, ТЭНов, компрессоров и др.;

•системах противопожарной защиты и отключения оборудования в аварийных ситуациях.

Причиной возможного замерзания воды в трубах является лами нарное движение воды при отрицательной температуре наружного воздуха и переохлаждении воды в аппарате. При диаметре трубки теп лообменника dтр = 2,2 см и скорости воды меньшей 0,1 м/с скорость во ды у стенки практически равна нулю. Вследствие малого термическо го сопротивления трубки температура воды у стенки приближается к температуре наружного воздуха. Особенно подвержена замерзанию вода в первом ряду трубок со стороны потока наружного воздуха.

Выделим три основных фактора, способствующих замерзанию воды:

•ошибки, допущенные при проектировании и связанные с завы шенной поверхностью нагрева, обвязкой по теплоносителю и способом управления;

•превышение температуры горячей воды и, как следствие, резкое снижение скорости движения воды, из за чего создается опасность замерзания воды в теплообменнике;

•перетекание холодного воздуха из за негерметичности клапана наружного воздуха и при полном закрытии плунжера водяного клапана.

Обычно защита от замерзания теплообменников выполняется на базе двухпозиционных регуляторов с датчиками температуры перед аппаратом и в обратном трубопроводе воды. Опасность заморажива ния прогнозируют по температуре воздуха перед аппаратом (tн

studfiles.net

Автоматизация систем кондиционирования воздуха

Кондиционирование воздуха: Автоматическое поддержание в закрытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения и качества) с целью обеспечения, как правило, оптимальных метеорологических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечения сохранности ценностей (СП 60.13330.2012).

Системы кондиционирования делятся на три основные группы:

Сплит-система. Это система кондиционирования воздуха, состоящая из двух блоков: внешнего (компрессорно-конденсаторного агрегата) и внутреннего (испарительного). Принцип работы системы основан на удалении тепла из кондиционируемого помещения и переносе его на улицу. Сплит-система, как и любая система кондиционирования работает на тех же физических принципах, что и бытовой холодильник.

Центральные системы кондиционирования, совмещенные с системами вентиляции. Основной задачей таких систем является поддержание соответствующих параметров воздушной среды: температуры, относительной влажности, чистоты и подвижности воздуха во всех помещениях объекта с помощью одной или нескольких технологических установок, за счет распределения потоков с помощью системы трубопроводов.

При этом правильный состав воздуха поддерживается больше вентиляцией, чем кондиционированием. Приточная вентиляция отвечает за приток свежего воздуха, вытяжная - за вытяжку вредных примесей.

Приточная установка служит для обработки воздуха и подачи его в обслуживаемые помещения. Под обработкой воздуха понимается его очистка от пыли и других загрязнений, охлаждение, нагрев, осушение или увлажнение.

Мультизонные системы. Их применяют для объектов с большим количеством помещений, где есть необходимость в индивидуальном регулировании температуры воздуха и особые требования по комфортности помещений, например, помещения серверных или технологического оборудования, требующего большого теплоотвода. Конструктивно мультизональная система состоит из одного или нескольких наружных блоков, соединенных хладоновыми трубопроводами, электрическими кабелями питания и управления с необходимым числом внутренних блоков настенного, напольно-потолочного, кассетного и канального исполнения.

Наиболее распространенными мультизонными системами являются чиллеры, фанкойлы, центральные кондиционеры.

Система автоматизации позволяет системе кондиционирования обеспечить необходимые, порой существенно различающиеся, параметры в помещениях, при этом не допуская перерасхода электроэнергии (VRV и VRF системы).

Возможная ошибка при проектировании: Не разделять северный и южный контуры отопления и кондиционирования в больших зданиях. В результате, одна половина работников находится в комфорте, а вторая либо замерзает, либо перегревается.

Управление системой центрального кондиционирования, совмещенной с системой вентиляции, можно декомпозировать на управление следующими частями:

  • Блок охлаждения входящего потока, который контактирует с теплообменником (испарителем) на воде или фреоне. Предполагается управление агрегатами чиллера и компрессорно-конденсатным узлом;
  • Блок нагрева входящего потока. Система кондиционирования обратима, в зимний период, процесс «разворачивается» и холод начинает перекачиваться из помещения на улицу; 
  • Вентиляторный блок притока (вытяжки) наружного воздуха. Возможно управление вентиляторами с помощью преобразователей частоты (экономично), либо управление геометрией сечения воздуховодов; 
  • Блоки осушения или увлажнения потока, который насыщает воздух водяными парами или удаляет избыток влаги из вентиляции. С помощью этого блока можно контролировать уровень влажности воздуха как в отдельно взятом помещении, так и во всем строении в целом; Блок осушения с датчиками
  • Фильтрующий блок, который очищает приточный поток от пыли, насекомых и прочих загрязнителей. При этом помимо фильтров и абсорбирующих кассет в состав этого блока входят и поглотители шума, обеспечивающие практически беззвучную эксплуатацию системы. Сам блок не требует управления, но уровень загрязнения фильтров существенно влияет на производительность и КПД системы, поэтому состояние фильтров постоянно контролируется;
  • Блок рекуперации потоков, который отвечает за подогрев приточного воздуха энергией вытяжного потока. Управление соотношением расходов входящего и исходящего потока в рекуператоре;
  • Сеть приточных и вытяжных воздуховодов, доставляющих подготовленные потоки в помещения. Производится автоматическое управление геометрией сечения трубопроводов и балансировка распределения мощности, в зависимости от параметров среды в помещениях.

В мультизонных системах кондиционирования управляют режимами работы наружного (центрального) блока, режимами работы каждого из внутренних блоков, распределением холодильной мощности по контурам. В этих системах каждый внутренний блок оснащается электронным терморегулирующим вентилем, который регулирует объем поступающего хладагента из общего контура в зависимости от тепловой нагрузки на этот блок. В результате, система лучше, чем обычные бытовые сплит-системы, поддерживает заданную температуру.

Автоматизация систем вентиляции и кондиционирования воздуха позволяет им выполнять следующие функции:

  • Регулировать температуру и влажность воздуха, поступающего в систему подающих каналов;
  • Поддерживать параметры воздуха в пределах санитарных норм с помощью нескольких инструментов управления;
  • Переключать системы кондиционирования и вентиляции на энерго­сберегающие режимы работы в часы пониженных нагрузок;
  • При необходимости, переводить системы в нестандартные и аварийные режимы функционирования;
  • Отображение технологических параметров отдельных узлов системы вентиляции на локальных пультах управления;
  • Извещать оператора при отказе или выходе параметров отдельных устройств и агрегатов за уставки, а также в случае, если какие-либо узлы системы вентиляции находятся в рабочем состоянии, хотя по регламенту они должны быть выключенными.

Технические средства автоматизации систем вентиляции и систем кондиционирования воздуха включают в себя:

  • Первичные преобразователи (датчики);
  • Вторичные приборы;
  • Автоматические регуляторы и управляющие вычислительные машины;
  • Исполнительные механизмы и регулирующие органы;
  • Электротехническую аппаратуру управления электроприводами.

Параметры работы устройств и показания датчиков, наблюдение за которыми необходимо для правильной и экономичной работы системы, отображаются на местных щитах управления и на пультах системы диспетчеризации. Контроль промежуточных параметров может быть выведен на монитор автоматически, при выходе из заданного диапазона, или через вложенные меню по каждой из подсистем.

Приточные системы вентиляции оснащают приборами для измерения:

  • Температуры воздуха в обслуживаемых помещениях, на улице, и в промежуточных точках;
  • Температуры и давления воды (пара или хладагента) до и после воздухонагревателей (кондиционеров), компрессоров, циркуляционных насосов, теплообменников и в других критических точках технологического процесса;
  • Перепады давления воздуха на фильтрах вентиляционных установок;
  • Энергетические параметры агрегатов системы.

Установки кондиционирования воздуха дополнительно оснащают приборами для измерения давления и температуры холодной воды или рассола от холодильной станции, а также приборами температуры и влажности по ходу обработки воздуха.

В системе центрального кондиционирования управление температурой в помещении осуществляется с помощью изменения кратности воздухообмена (температура приточного воздуха устанавливается для системы в целом). В мультизонных системах, можно более точно устанавливать температуру для каждого из помещений, за счет изменения режима внутренних блоков с хладагентом, или теплоносителем (доводчики).

Датчики

В системе кондиционирования применяются следующие виды датчиков:

  • Датчики контроля температуры приточного воздуха и воздуха внутри помещения;
  • Датчики контроля концентрации в воздухе помещений углекислого газа СО2;
  • Датчики контроля влажности воздуха;
  • Датчики контроля состояния и работы оборудования (давления и скорости воздушного потока в воздуховодах, температурные, датчики давления или протока для устройств с циркулирующей по трубопроводам жидкостью и т.д.).

Выходные сигналы с датчиков поступают в шкаф управления для анализа полученных данных и выбора соответствующего алгоритма работы системы кондиционирования.

Терморегуляторы

Терморегуляторы являются элементом управления системы и бывают механическими и электронными. С помощью терморегулятора пользователь может устанавливать условия, которые он считает комфортными

Механические терморегуляторы. Они состоят из термической головки (чувствительного элемента) и клапана. При изменении температуры воздуха в охлаждаемом помещении чувствительный элемент реагирует на это и перемещает шток клапана регулятора. Таким изменением хода осуществляется регулирование подачи холодного воздуха.

Электронные терморегуляторы. Это автоматические устройства, пульты управления, которые обеспечивают поддержание заданной температуры в помещении. В системе охлаждения воздуха они автоматически управляют внутренним блоком (изменяя расход хладагента или частоту вращения вентилятора), целью их работы является созданием в помещении температурного режима, заданного пользователем.

Механический и электронный воздушные терморегуляторы отличаются только способом задания температуры. Механизм управления температурой у них идентичен – по сигналу, передаваемому по кабельной линии. В этом их отличие от регуляторов на радиаторных батареях.

К исполнительным устройствам системы кондиционирования - воздушным клапанам и заслонкам, вентиляторам, насосам, компрессорам, а также калориферам, охладителям и т.д. подключаются электро- или пневмоприводы, через которые и осуществляется управление системой. Они позволяют:

  • Ступенчато или плавно (при применении преобразователей частоты) регулировать скорость вращения вентиляторов;
  • Управлять состоянием воздушных клапанов и заслонок;
  • Регулируется производительность канальных нагревателей и охладителей;
  • Регулировать производительность циркуляционных насосов;
  • Осуществляется управление увлажнителями и осушителями воздуха и т.д.

Анализ сигналов с датчиков, выбор алгоритма работы, передача команды на привод и контроль выполнения команды происходит в контроллерах и серверах системы автоматизации.

Управление электродвигателями компрессоров, насосов и вентиляторов, в особенности мощностью более 1 кВт, наиболее экономично выполнять с помощь преобразователей частоты. На рисунке показан возможный экономический эффект от применения ПЧ в системах кондиционирования.

Щиты автоматизации системы кондиционирования

Щиты автоматизации являются средством, предназначенным для управления системой кондиционирования и вентиляции. Основным элементом щита управления является микропроцессорный контроллер. Контроллеры систем автоматики, выпускаются свободно программируемыми, что позволяет их использовать в системах разного масштаба и назначения.

При подключении датчиков к щиту автоматизации системы кондиционирования учитывают тип сигнала, передаваемого преобразователем - аналоговый, дискретный или пороговый. Модули расширения, управляющие приводами устройств, выбирают с учетом вида управляющего сигнала и протокола управления.

После программирования контроллер выводит систему на заданные параметры и временной цикл работы, далее система может функционировать, в полностью автоматическом режиме осуществляется:

  • Анализ полученных от датчиков показаний, обработка данных и внесение в работу оборудования корректировок для поддержания заданных параметров среды внутри в помещении;
  • Вывод информации о системе опратору;
  • Слежение за работой и состоянием оборудования кондиционирования с выводом информации на индикационные табло;
  • Защиты оборудования от короткого замыкания, перегрева, избегания неправильных режимов работы, и т.п.;
  • Контроль своевременной замены фильтров и прохождения техобслуживания.

Проектирование системы автоматизации кондиционирования

Проект автоматизации систем кондиционирования выполняется с учетом технологических требований специалистов-проектировщиков ОВ:

  • Автоматизации подлежат холодильные машины, циркуляционные насосы, двух- и трех-ходовые клапаны, другое оборудование;
  • Учитываются летний, зимний, переходный, аварийный режимы работы систем;
  • Предусматривается синхронизация работы холодильных машин, циркуляционных насосов клапанов;
  • Предусматривают переключение основного и резервного насосов, для равномерного расходования ресурса;
  • Предусматривают передачу информации в систему диспетчеризации здания и реакции при получении тревожного сигнала от системы пожарной сигнализации.

Типичный состав проекта автоматизации системы кондиционирования содержит листы:

  • Общие данные;
  • Структурные схемы, при необходимости;
  • Задание на программирование системы;
  • Функциональные схемы автоматизации для каждой из холодильных станций;
  • Схемы связи контроллеров системы автоматизации;
  • Схемы внешних соединений для щитов автоматизации (фактически это таблица соединений);
  • Схемы соединений со смежными системами автоматизации;
  • Принципиальные электрические схемы щитов автоматизации, двигателей насосов, управления клапанами;
  • Принципиальные схемы питания щитов автоматизации;
  • План расположения оборудования и проводок систем автоматизации;
  • Кабельные журналы;
  • Монтажные схемы;
  • Спецификация оборудования и проводок.

Режимы работы системы. Работа в системе автоматизации и диспетчеризации здания

Щиты управления могут работать в трех основных режимах управления:

Ручной режим. Используя пульт, подключенный к щиту автоматизации, он может быть размещен непосредственно на щите, или это могут быть кнопки включения/выключения режимов. Оператор вручную, непосредственно на щите, или удаленно выбирает режим работы системы в зависимости от параметров среды помещения.

Автоматический автономный режим. В этом случае включение, выключение, выбор режима работы системы происходит автономно, без учета данных других климатических систем, с уведомлением об этом диспетчерской системы.

Автоматический режим с учетом алгоритмов системы управления зданием. При таком режиме работа отопления синхронизирована с другими системами жизнеобеспечения здания. Подробнее об интеграции систем автоматизации.

rina.pro


Смотрите также